Cargando…

Deciphering Structures of Inclusion Complexes of Amylose with Natural Phenolic Amphiphiles

[Image: see text] Amylose inclusion complexes were prepared in aqueous solution with the amphiphilic moiety 3-pentadecylphenol via a direct mixing method. Attenuated total reflection Fourier transform infrared spectroscopy as well as differential scanning calorimetry confirmed the formation of amylo...

Descripción completa

Detalles Bibliográficos
Autores principales: Kumar, Kamlesh, Loos, Katja
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822131/
https://www.ncbi.nlm.nih.gov/pubmed/31681887
http://dx.doi.org/10.1021/acsomega.9b02388
Descripción
Sumario:[Image: see text] Amylose inclusion complexes were prepared in aqueous solution with the amphiphilic moiety 3-pentadecylphenol via a direct mixing method. Attenuated total reflection Fourier transform infrared spectroscopy as well as differential scanning calorimetry confirmed the formation of amylose inclusion complexes. The morphology of the synthesized complexes is sensitive to temperature, and X-ray data revealed that the inclusion complexes exhibited distinct structures at different temperatures. Small-angle X-ray scattering data indicated ordered lamellar structures of the synthesized complexes at room temperature, and wide-angle X-ray scattering profiles showed the transformation of the crystalline structure as a function of the temperature. The results of this research will help to understand the relationship between the inclusion complex structures with temperature.