Cargando…

Facile Synthesis of Quaternary Structurally Ordered L1(2)-Pt(Fe, Co, Ni)(3) Nanoparticles with Low Content of Platinum as Efficient Oxygen Reduction Reaction Electrocatalysts

[Image: see text] Synthesis of electrocatalysts for oxygen reduction reaction (ORR) with not only prominent electrocatalytic performance but also a low amount of Pt is the urgent challenge in the popularization of fuel cells. In this work, through a facile synthetic strategy of spray dehydration on...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Sihao, Luo, Qingyu, Zhu, Yingfang, Tang, Shaolong, Du, Youwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2019
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822218/
https://www.ncbi.nlm.nih.gov/pubmed/31681899
http://dx.doi.org/10.1021/acsomega.9b02918
Descripción
Sumario:[Image: see text] Synthesis of electrocatalysts for oxygen reduction reaction (ORR) with not only prominent electrocatalytic performance but also a low amount of Pt is the urgent challenge in the popularization of fuel cells. In this work, through a facile synthetic strategy of spray dehydration on a solid surface and annealing process, we demonstrate the first manufacture of quaternary structurally ordered PtM(3) (M = transition metal) intermetallic nanoparticles (NPs), Pt(Fe, Co, Ni)(3), in order to lower the content of Pt. The atomic contents of Pt, Fe, Co, and Ni are equal and the chemical structure of Pt(Fe, Co, Ni)(3) is a cubic L1(2)-ordered structure. L1(2)-Pt(Fe, Co, Ni)(3)/C electrocatalysts exhibit enhanced electrocatalytic performance toward ORR with mass activity (MA) 6.6 times higher than the commercial Pt/C and a minimal loss of 17% in MA and 1.5% loss in specific activity (SA) after 10 000 potential cycles at 0.9 V. Furthermore, the stability behavior is confirmed to be attributed to the coaction of particle sizes and the ordering effect. Compared with traditional Pt-based electrocatalysts in the stoichiometric forms of Pt(3)M and PtM, L1(2)-Pt(Fe, Co, Ni)(3) intermetallic NPs exhibit excellent performance and higher cost effectiveness. Moreover, this work also proposes a facile and effective synthetic strategy for manufacturing multicomponent Pt-based electrocatalysts for ORR.