Cargando…
Use of Machine Learning Algorithms for Prediction of Fetal Risk using Cardiotocographic Data
BACKGROUND: A major contributor to under-five mortality is the death of children in the 1(st) month of life. Intrapartum complications are one of the major causes of perinatal mortality. Fetal cardiotocograph (CTGs) can be used as a monitoring tool to identify high-risk women during labor. AIM: The...
Autores principales: | Hoodbhoy, Zahra, Noman, Mohammad, Shafique, Ayesha, Nasim, Ali, Chowdhury, Devyani, Hasan, Babar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer - Medknow
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822315/ https://www.ncbi.nlm.nih.gov/pubmed/31681548 http://dx.doi.org/10.4103/ijabmr.IJABMR_370_18 |
Ejemplares similares
-
Machine learning from fetal flow waveforms to predict adverse perinatal outcomes: a study protocol
por: Hoodbhoy, Zahra, et al.
Publicado: (2018) -
Can machine learning methods be used for identification of at-risk neonates in low-resource settings? A prospective cohort study
por: Hasan, Babar S, et al.
Publicado: (2023) -
Detection of subclinical rheumatic heart disease in children using a deep learning algorithm on digital stethoscope: a study protocol
por: Ali, Fatima, et al.
Publicado: (2021) -
Investigating the interpretability of fetal status assessment using antepartum cardiotocographic records
por: Huang, Liting, et al.
Publicado: (2021) -
Impact of pre-eclampsia on the cardiovascular health of the offspring: a cohort study protocol
por: Hoodbhoy, Zahra, et al.
Publicado: (2018)