Cargando…
RapidPlan knowledge based planning: iterative learning process and model ability to steer planning strategies
PURPOSE: To determine if the performance of a knowledge based RapidPlan (RP) planning model could be improved with an iterative learning process, i.e. if plans generated by an RP model could be used as new input to re-train the model and achieve better performance. METHODS: Clinical VMAT plans from...
Autores principales: | Fogliata, A., Cozzi, L., Reggiori, G., Stravato, A., Lobefalo, F., Franzese, C., Franceschini, D., Tomatis, S., Scorsetti, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822368/ https://www.ncbi.nlm.nih.gov/pubmed/31666094 http://dx.doi.org/10.1186/s13014-019-1403-0 |
Ejemplares similares
-
RapidPlan head and neck model: the objectives and possible clinical benefit
por: Fogliata, A., et al.
Publicado: (2017) -
Knowledge-based DVH estimation and optimization for breast VMAT plans with and without avoidance sectors
por: Fogliata, Antonella, et al.
Publicado: (2022) -
MLC parameters from static fields to VMAT plans: an evaluation in a RT-dedicated MC environment (PRIMO)
por: Paganini, Lucia, et al.
Publicado: (2019) -
On the gEUD biological optimization objective for organs at risk in Photon Optimizer of Eclipse treatment planning system
por: Fogliata, Antonella, et al.
Publicado: (2017) -
Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium
por: Schubert, Carolin, et al.
Publicado: (2017)