Cargando…
Wild-type menin is rapidly degraded via the ubiquitin-proteasome pathway in a rat insulinoma cell line
Menin is encoded by multiple endocrine neoplasia type 1 (MEN1) gene, the germ line mutations of which are the main cause of pancreatic neuroendocrine tumors (PNETs). To date, a large number of frameshift, nonsense and missense mutations of MEN1 have been identified to be responsible for part of MEN1...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822493/ https://www.ncbi.nlm.nih.gov/pubmed/31652443 http://dx.doi.org/10.1042/BSR20190471 |
Sumario: | Menin is encoded by multiple endocrine neoplasia type 1 (MEN1) gene, the germ line mutations of which are the main cause of pancreatic neuroendocrine tumors (PNETs). To date, a large number of frameshift, nonsense and missense mutations of MEN1 have been identified to be responsible for part of MEN1-defficient PNETs patients due to truncation or rapid degradation of menin protein. However, the stability of the wild-type (WT) menin in PNETs is totally unknown. In the present study, we observed ubiquitination of WT menin in 293T cells by transfection of ectopic WT menin and HA-ubiquitin. As expected, either endogenous or ectopic WT menin is stable in 293T cells, whereas in INS-1 cells, a rat insulinoma cell line derived from PNETs, either endogenous or ectopic WT menin is rapidly degraded through ubiquitin-proteasome pathway. Furthermore, the degradation of WT menin is more rapid in the presence of serum. Our findings suggest that in part of PNETs patients with WT MEN1, a ubiquitin-proteasome system targeting menin is untimely activated. |
---|