Cargando…
MicroRNA-451 inhibits inflammation and proliferation of glomerular mesangial cells through down-regulating PSMD11 and NF-κB p65
The present study aimed to investigate the regulatory roles of microRNA-451 (miR-451) on the inflammation and proliferation of glomerular mesangial cells (GMCs) under high-glucose condition, and reveal the potential mechanisms related to 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) and n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822504/ https://www.ncbi.nlm.nih.gov/pubmed/31652441 http://dx.doi.org/10.1042/BSR20191455 |
Sumario: | The present study aimed to investigate the regulatory roles of microRNA-451 (miR-451) on the inflammation and proliferation of glomerular mesangial cells (GMCs) under high-glucose condition, and reveal the potential mechanisms related to 26S proteasome non-ATPase regulatory subunit 11 (PSMD11) and nuclear factor-κ B (NF-κB) signaling. The interaction between PSMD11 and miR-451 was identified by dual luciferase reporter (DLR) gene assay. GMCs were treated with 5.6 mmol/l (normal, L-GMCs) and 30 mmol/l glucose (high-glucose, H-GMCs), respectively. After transfecting with pcDNA3.1-PSMD11 and/or miR-451 mimics, the expression of miR-451, PSMD11, inhibitor of NF-κB α (IκBα), phosphorylated IκBα (p-IκBα), NF-κB p65, COX-2, and cyclinD1 were detected in H-GMCs by quantitative real-time PCR (qRT-PCR) and/or Western blot. The levels of interleukin (IL)-1β, IL-6, and IL-8, cell cycle, and viability was detected by enzyme-linked immunosorbent assay, flow cytometry, and MTT assay, respectively. MiR-451 was up-regulated in H-GMCs, and negatively regulated its target PSMD11 (P<0.05). H-GMCs exhibited significantly higher levels of IL-1β, IL-6, and IL-8, cell viability, and p-IκBα, NF-κB, COX-2, and cyclinD1 expression than L-GMCs (P<0.05). The transfection of miR-451 mimics significantly decreased the levels of IL-1β, IL-6, and IL-8, inhibited the cell viability via blocking cells in G(0)/G(1) phase, and down-regulated p-IκBα, NF-κB p65, COX-2, and cyclinD1 in H-GMCs (P<0.05). The regulatory effects of miR-451 mimics on H-GMCs were reversed by the transfection of PSMD11 (P<0.05). The up-regulation of miR-451 inhibits the inflammation and proliferation of H-GMCs through down-regulating PSMD11 and NF-κB p65. |
---|