Cargando…
A comprehensive analysis of amino-peptidase N1 protein (APN) from Anopheles culicifacies for epitope design using Immuno-informatics models
Analysis of the Amino-peptidase N (APN) protein from Anopheles culicifacies as a vector based Transmission Blocking Vaccines (TBV) target has been considered for malaria vaccine development. Short peptides as potential epitopes for B cells and cytotoxic T cells and/or helper T cells were identified...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822521/ https://www.ncbi.nlm.nih.gov/pubmed/31719771 http://dx.doi.org/10.6026/97320630015600 |
Sumario: | Analysis of the Amino-peptidase N (APN) protein from Anopheles culicifacies as a vector based Transmission Blocking Vaccines (TBV) target has been considered for malaria vaccine development. Short peptides as potential epitopes for B cells and cytotoxic T cells and/or helper T cells were identified using prediction models provided by NetCTL and IEDB servers. Antigenicity determination, allergenicity, immunogenicity, epitope conservancy analysis, atomic interaction with HLA allele specific structure models and population coverage were investigated in this study. The analysis of the target protein helped to identify conserved regions as potential epitopes of APN in various Anopheles species. The T cell epitopes like peptides were further analyzed by using molecular docking to check interactions against the allele specific HLA models. Thus, we report the predicted B cell (VDERYRL) and T cell (RRYLATTQF for HLA class I and LKATFTVSI for HLA class II) epitopes like peptides from APN protein of Anopheles culicifacies (Diptera: Culicidae) for further consideration as vaccine candidates subsequent to in vitro and in vivo analysis. |
---|