Cargando…
Robust Sparse Representation and Multiclass Support Matrix Machines for the Classification of Motor Imagery EEG Signals
Background: EEG signals are extremely complex in comparison to other biomedical signals, thus require an efficient feature selection as well as classification approach. Traditional feature extraction and classification methods require to reshape the data into vectors that results in losing the struc...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822635/ https://www.ncbi.nlm.nih.gov/pubmed/32309055 http://dx.doi.org/10.1109/JTEHM.2019.2942017 |
Ejemplares similares
-
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
Multiclass Posterior Probability Twin SVM for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2015) -
Multiclass Classification Based on Combined Motor Imageries
por: Lindig-León, Cecilia, et al.
Publicado: (2020) -
Motor imagery classification using sparse representations: an exploratory study
por: de Menezes, José Antonio Alves, et al.
Publicado: (2023) -
Classification of Motor Imagery EEG Signals with Support Vector Machines and Particle Swarm Optimization
por: Ma, Yuliang, et al.
Publicado: (2016)