Cargando…
Detection of quantitative trait loci associated with drought tolerance in St. Augustinegrass
St. Augustinegrass (Stenotaphrum secundatum) is a warm-season grass species commonly utilized as turf in the southeastern US. Improvement in the drought tolerance of St. Augustinegrass has significant value within the turfgrass industry. Detecting quantitative trait loci (QTL) associated with drough...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822738/ https://www.ncbi.nlm.nih.gov/pubmed/31671135 http://dx.doi.org/10.1371/journal.pone.0224620 |
Sumario: | St. Augustinegrass (Stenotaphrum secundatum) is a warm-season grass species commonly utilized as turf in the southeastern US. Improvement in the drought tolerance of St. Augustinegrass has significant value within the turfgrass industry. Detecting quantitative trait loci (QTL) associated with drought tolerance will allow for advanced breeding strategies to identify St. Augustinegrass germplasm with improved performance for this trait. A multi-year and multi-environment study was performed to identify QTL in a ‘Raleigh’ x ‘Seville’ mapping population segregating for phenotypic traits associated with drought tolerance. Phenotypic data was collected from a field trial and a two-year greenhouse study, which included relative water content (RWC), chlorophyll content (CHC), leaf firing (LF), leaf wilting (LW), green cover (GC) and normalized difference vegetative index (NDVI). Significant phenotypic variance was observed and a total of 70 QTL were detected for all traits. A genomic region on linkage group R6 simultaneously harbored QTL for RWC, LF and LW in different experiments. In addition, overlapping QTL for GC, LF, LW and NDVI were found on linkage groups R1, R5, R7 and S2. Sequence alignment analysis revealed several drought response genes within these regions. The QTL identified in this study have potential to be used in the future to identify genes associated with drought tolerance and for use in marker-assisted breeding. |
---|