Cargando…

Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization

Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the li...

Descripción completa

Detalles Bibliográficos
Autores principales: Auvray, François, Dennetiere, David, Giuliani, Alexandre, Jamme, Frédéric, Wien, Frank, Nay, Bastien, Zirah, Séverine, Polack, François, Menneglier, Claude, Lagarde, Bruno, Hirst, Jonathan D., Réfrégiers, Matthieu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Crystallographic Association 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823104/
https://www.ncbi.nlm.nih.gov/pubmed/31700943
http://dx.doi.org/10.1063/1.5120346
_version_ 1783464475535343616
author Auvray, François
Dennetiere, David
Giuliani, Alexandre
Jamme, Frédéric
Wien, Frank
Nay, Bastien
Zirah, Séverine
Polack, François
Menneglier, Claude
Lagarde, Bruno
Hirst, Jonathan D.
Réfrégiers, Matthieu
author_facet Auvray, François
Dennetiere, David
Giuliani, Alexandre
Jamme, Frédéric
Wien, Frank
Nay, Bastien
Zirah, Séverine
Polack, François
Menneglier, Claude
Lagarde, Bruno
Hirst, Jonathan D.
Réfrégiers, Matthieu
author_sort Auvray, François
collection PubMed
description Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding.
format Online
Article
Text
id pubmed-6823104
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Crystallographic Association
record_format MEDLINE/PubMed
spelling pubmed-68231042019-11-07 Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization Auvray, François Dennetiere, David Giuliani, Alexandre Jamme, Frédéric Wien, Frank Nay, Bastien Zirah, Séverine Polack, François Menneglier, Claude Lagarde, Bruno Hirst, Jonathan D. Réfrégiers, Matthieu Struct Dyn ARTICLES Ultraviolet (UV) synchrotron radiation circular dichroism (SRCD) spectroscopy has made an important contribution to the determination and understanding of the structure of bio-molecules. In this paper, we report an innovative approach that we term time-resolved SRCD (tr-SRCD), which overcomes the limitations of current broadband UV SRCD setups. This technique allows accessing ultrafast time scales (down to nanoseconds), previously measurable only by other methods, such as infrared (IR), nuclear magnetic resonance (NMR), fluorescence and absorbance spectroscopies, and small angle X-ray scattering (SAXS). The tr-SRCD setup takes advantage of the natural polarization of the synchrotron radiation emitted by a bending magnet to record broadband UV CD faster than any current SRCD setup, improving the acquisition speed from 10 mHz to 130 Hz and the accessible temporal resolution by several orders of magnitude. We illustrate the new approach by following the isomer concentration changes of an azopeptide after a photoisomerization. This breakthrough in SRCD spectroscopy opens up a wide range of potential applications to the detailed characterization of biological processes, such as protein folding and protein-ligand binding. American Crystallographic Association 2019-10-31 /pmc/articles/PMC6823104/ /pubmed/31700943 http://dx.doi.org/10.1063/1.5120346 Text en © 2019 Author(s). 2329-7778/2019/6(5)/054307/6 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle ARTICLES
Auvray, François
Dennetiere, David
Giuliani, Alexandre
Jamme, Frédéric
Wien, Frank
Nay, Bastien
Zirah, Séverine
Polack, François
Menneglier, Claude
Lagarde, Bruno
Hirst, Jonathan D.
Réfrégiers, Matthieu
Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title_full Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title_fullStr Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title_full_unstemmed Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title_short Time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
title_sort time resolved transient circular dichroism spectroscopy using synchrotron natural polarization
topic ARTICLES
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823104/
https://www.ncbi.nlm.nih.gov/pubmed/31700943
http://dx.doi.org/10.1063/1.5120346
work_keys_str_mv AT auvrayfrancois timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT dennetieredavid timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT giulianialexandre timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT jammefrederic timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT wienfrank timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT naybastien timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT zirahseverine timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT polackfrancois timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT menneglierclaude timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT lagardebruno timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT hirstjonathand timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization
AT refregiersmatthieu timeresolvedtransientcirculardichroismspectroscopyusingsynchrotronnaturalpolarization