Cargando…
Stimulation of indigenous microbes by optimizing the water cut in low permeability reservoirs for green and enhanced oil recovery
Low permeability oil reservoirs are a widespread petroleum reservoir type all over the world. Therefore, methods to recover these reservoirs efficiently are of importance to guarantee energy supply. Here we report our novel stimulation of indigenous microbes by optimizing the water cut in low permea...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823453/ https://www.ncbi.nlm.nih.gov/pubmed/31673044 http://dx.doi.org/10.1038/s41598-019-52330-2 |
Sumario: | Low permeability oil reservoirs are a widespread petroleum reservoir type all over the world. Therefore, methods to recover these reservoirs efficiently are of importance to guarantee energy supply. Here we report our novel stimulation of indigenous microbes by optimizing the water cut in low permeability reservoirs for green and enhanced oil recovery. We aimed to investigate the characteristics of indigenous bacterial communities with changes in water cut in reservoirs by high-throughput sequencing technology, and reveal the mechanism and characteristics of the crude oil biotreatment under different crude oil-water ratio conditions and the optimum activation time of indigenous functional microbial groups in reservoirs. The indigenous microbial metabolism products were characterized by gas chromatography mass spectrometry. Results showed that Acinetobacter (47.1%) and Pseudomones (19.8%) were the main functional genus of crude oil degradation at the optimal activation time, and can reduce the viscosity of crude oil from 8.33 to 5.75 mPa·s. The dominant bacteria genus for oil recovery after activation of the production fluids was similar to those in the reservoirs with water cut of 60–80%. Furthermore seven mechanism pathways of enhancing oil recovery by the synergistic of functional microbial groups and their metabolites under different water cut conditions in low permeability reservoirs have been established. |
---|