Cargando…
Estimation of material parameters based on precipitate shape: efficient identification of low-error region with Gaussian process modeling
In this study, an efficient method for estimating material parameters based on the experimental data of precipitate shape is proposed. First, a computational model that predicts the energetically favorable shape of precipitate when a d-dimensional material parameter (x) is given is developed. Second...
Autores principales: | Tsukada, Yuhki, Takeno, Shion, Karasuyama, Masayuki, Fukuoka, Hitoshi, Shiga, Motoki, Koyama, Toshiyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823509/ https://www.ncbi.nlm.nih.gov/pubmed/31673031 http://dx.doi.org/10.1038/s41598-019-52138-0 |
Ejemplares similares
-
Computational thermodynamics and microstructure simulations to understand the role of grain boundary phase in Nd-Fe-B hard magnets
por: Koyama, Toshiyuki, et al.
Publicado: (2021) -
Generalized Gaussian Error Calculus
por: Grabe, Michael
Publicado: (2010) -
Spatial Modeling of Precipitation Based on Data-Driven Warping of Gaussian Processes
por: Agou, Vasiliki D., et al.
Publicado: (2022) -
Estimation of Clustering Parameters Using Gaussian Process Regression
por: Rigby, Paul, et al.
Publicado: (2014) -
Gaussian Process Regression for Materials and Molecules
por: Deringer, Volker L., et al.
Publicado: (2021)