Cargando…
The Fever Coach Mobile App for Participatory Influenza Surveillance in Children: Usability Study
BACKGROUND: Effective surveillance of influenza requires a broad network of health care providers actively reporting cases of influenza-like illnesses and positive laboratory results. Not only is this traditional surveillance system costly to establish and maintain but there is also a time lag betwe...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823603/ https://www.ncbi.nlm.nih.gov/pubmed/31625946 http://dx.doi.org/10.2196/14276 |
Sumario: | BACKGROUND: Effective surveillance of influenza requires a broad network of health care providers actively reporting cases of influenza-like illnesses and positive laboratory results. Not only is this traditional surveillance system costly to establish and maintain but there is also a time lag between a change in influenza activity and its detection. A new surveillance system that is both reliable and timely will help public health officials to effectively control an epidemic and mitigate the burden of the disease. OBJECTIVE: This study aimed to evaluate the use of parent-reported data of febrile illnesses in children submitted through the Fever Coach app in real-time surveillance of influenza activities. METHODS: Fever Coach is a mobile app designed to help parents and caregivers manage fever in young children, currently mainly serviced in South Korea. The app analyzes data entered by a caregiver and provides tailored information for care of the child based on the child’s age, sex, body weight, body temperature, and accompanying symptoms. Using the data submitted to the app during the 2016-2017 influenza season, we built a regression model that monitors influenza incidence for the 2017-2018 season and validated the model by comparing the predictions with the public influenza surveillance data from the Korea Centers for Disease Control and Prevention (KCDC). RESULTS: During the 2-year study period, 70,203 diagnosis data, including 7702 influenza reports, were submitted. There was a significant correlation between the influenza activity predicted by Fever Coach and that reported by KCDC (Spearman ρ=0.878; P<.001). Using this model, the influenza epidemic in the 2017-2018 season was detected 10 days before the epidemic alert announced by KCDC. CONCLUSIONS: The Fever Coach app successfully collected data from 7.73% (207,699/2,686,580) of the target population by providing care instruction for febrile children. These data were used to develop a model that accurately estimated influenza activity measured by the central government agency using reports from sentinel facilities in the national surveillance network. |
---|