Cargando…

Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes

The risk of meiotic segregation errors increases dramatically during a woman’s thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion...

Descripción completa

Detalles Bibliográficos
Autores principales: Perkins, Adrienne T., Greig, Miranda M., Sontakke, Amrita A., Peloquin, Andrew S., McPeek, Mark A., Bickel, Sharon E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823651/
https://www.ncbi.nlm.nih.gov/pubmed/31037468
http://dx.doi.org/10.1007/s00412-019-00702-y
Descripción
Sumario:The risk of meiotic segregation errors increases dramatically during a woman’s thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage. In support of this model, we recently reported (Perkins et al. in Proc Natl Acad Sci U S A 113(44):E6823–E6830, 2016) that the knockdown of the reactive oxygen species (ROS)–scavenging enzyme, superoxide dismutase (SOD), during meiotic prophase causes premature loss of arm cohesion and segregation errors in Drosophila oocytes. If age-dependent oxidative damage causes meiotic segregation errors, then the expression of extra SOD1 (cytosolic/nuclear) or SOD2 (mitochondrial) in oocytes may attenuate this effect. To test this hypothesis, we generated flies that contain a UAS-controlled EMPTY, SOD1, or SOD2 cassette and induced expression using a Gal4 driver that turns on during meiotic prophase. We then compared the fidelity of chromosome segregation in aged and non-aged Drosophila oocytes for all three genotypes. As expected, p{EMPTY} oocytes subjected to aging exhibited a significant increase in nondisjunction (NDJ) compared with non-aged oocytes. In contrast, the magnitude of age-dependent NDJ was significantly reduced when expression of extra SOD1 or SOD2 was induced during prophase. Our findings support the hypothesis that a major factor underlying the maternal age effect in humans is age-induced oxidative damage that results in premature loss of meiotic cohesion. Moreover, our work raises the exciting possibility that antioxidant supplementation may provide a preventative strategy to reduce the risk of meiotic segregation errors in older women. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00412-019-00702-y) contains supplementary material, which is available to authorized users.