Cargando…
Predicting transcription factor binding using ensemble random forest models
Background: Understanding the location and cell-type specific binding of Transcription Factors (TFs) is important in the study of gene regulation. Computational prediction of TF binding sites is challenging, because TFs often bind only to short DNA motifs and cell-type specific co-factors may work t...
Autores principales: | Behjati Ardakani, Fatemeh, Schmidt, Florian, Schulz, Marcel H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823902/ https://www.ncbi.nlm.nih.gov/pubmed/31723409 http://dx.doi.org/10.12688/f1000research.16200.2 |
Ejemplares similares
-
Prediction of single-cell gene expression for transcription factor analysis
por: Behjati Ardakani, Fatemeh, et al.
Publicado: (2020) -
CpG content-dependent associations between transcription factors and histone modifications
por: Fischer, Jonas, et al.
Publicado: (2021) -
Combining transcription factor binding affinities with open-chromatin data for accurate gene expression prediction
por: Schmidt, Florian, et al.
Publicado: (2017) -
The adapted Activity-By-Contact model for enhancer–gene assignment and its application to single-cell data
por: Hecker, Dennis, et al.
Publicado: (2023) -
TEPIC 2—an extended framework for transcription factor binding prediction and integrative epigenomic analysis
por: Schmidt, Florian, et al.
Publicado: (2019)