Cargando…
Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling
BACKGROUND: Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenua...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823953/ https://www.ncbi.nlm.nih.gov/pubmed/31672147 http://dx.doi.org/10.1186/s12933-019-0947-5 |
_version_ | 1783464627044089856 |
---|---|
author | Mori, Yusaku Terasaki, Michishige Hiromura, Munenori Saito, Tomomi Kushima, Hideki Koshibu, Masakazu Osaka, Naoya Ohara, Makoto Fukui, Tomoyasu Ohtaki, Hirokazu Tsutomu, Hirano Yamagishi, Sho-ichi |
author_facet | Mori, Yusaku Terasaki, Michishige Hiromura, Munenori Saito, Tomomi Kushima, Hideki Koshibu, Masakazu Osaka, Naoya Ohara, Makoto Fukui, Tomoyasu Ohtaki, Hirokazu Tsutomu, Hirano Yamagishi, Sho-ichi |
author_sort | Mori, Yusaku |
collection | PubMed |
description | BACKGROUND: Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenuate vascular injury. In this study, we examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, luseogliflozin on PVAT remodeling and neointima formation after wire injury in mice. METHODS: Wilt-type mice fed with low-fat diet (LFD) or high-fat diet (HFD) received oral administration of luseogliflozin (18 mg/kg/day) or vehicle. Mice underwent bilateral femoral artery wire injury followed by unilateral removal of surrounding PVAT. After 25 days, injured femoral arteries and surrounding PVAT were analyzed. RESULTS: In LFD-fed lean mice, neither luseogliflozin treatment or PVAT removal attenuated the intima-to-media (I/M) ratio of injured arteries. However, in HFD-fed mice, luseogliflozin or PVAT removal reduced the I/M ratio, whereas their combination showed no additive reduction. In PVAT surrounding injured femoral arteries of HFD-fed mice, luseogliflozin treatment decreased the adipocyte sizes. Furthermore, luseogliflozin reduced accumulation of macrophages expressing platelet-derived growth factor-B (PDGF-B) and increased adiponectin gene expression. Gene expression levels of Pdgf-b in PVAT were correlated with the I/M ratio. CONCLUSIONS: Our present study suggests that luseogliflozin could attenuate neointimal hyperplasia after wire injury in HFD-fed mice partly via suppression of macrophage PDGF-B expression in PVAT. Inhibition of PVAT remodeling by luseogliflozin may be a novel therapeutic target for vascular remodeling after angioplasty. |
format | Online Article Text |
id | pubmed-6823953 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-68239532019-11-06 Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling Mori, Yusaku Terasaki, Michishige Hiromura, Munenori Saito, Tomomi Kushima, Hideki Koshibu, Masakazu Osaka, Naoya Ohara, Makoto Fukui, Tomoyasu Ohtaki, Hirokazu Tsutomu, Hirano Yamagishi, Sho-ichi Cardiovasc Diabetol Original Investigation BACKGROUND: Excess fat deposition could induce phenotypic changes of perivascular adipose tissue (PVAT remodeling), which may promote the progression of atherosclerosis via modulation of adipocytokine secretion. However, it remains unclear whether and how suppression of PVAT remodeling could attenuate vascular injury. In this study, we examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor, luseogliflozin on PVAT remodeling and neointima formation after wire injury in mice. METHODS: Wilt-type mice fed with low-fat diet (LFD) or high-fat diet (HFD) received oral administration of luseogliflozin (18 mg/kg/day) or vehicle. Mice underwent bilateral femoral artery wire injury followed by unilateral removal of surrounding PVAT. After 25 days, injured femoral arteries and surrounding PVAT were analyzed. RESULTS: In LFD-fed lean mice, neither luseogliflozin treatment or PVAT removal attenuated the intima-to-media (I/M) ratio of injured arteries. However, in HFD-fed mice, luseogliflozin or PVAT removal reduced the I/M ratio, whereas their combination showed no additive reduction. In PVAT surrounding injured femoral arteries of HFD-fed mice, luseogliflozin treatment decreased the adipocyte sizes. Furthermore, luseogliflozin reduced accumulation of macrophages expressing platelet-derived growth factor-B (PDGF-B) and increased adiponectin gene expression. Gene expression levels of Pdgf-b in PVAT were correlated with the I/M ratio. CONCLUSIONS: Our present study suggests that luseogliflozin could attenuate neointimal hyperplasia after wire injury in HFD-fed mice partly via suppression of macrophage PDGF-B expression in PVAT. Inhibition of PVAT remodeling by luseogliflozin may be a novel therapeutic target for vascular remodeling after angioplasty. BioMed Central 2019-10-31 /pmc/articles/PMC6823953/ /pubmed/31672147 http://dx.doi.org/10.1186/s12933-019-0947-5 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Original Investigation Mori, Yusaku Terasaki, Michishige Hiromura, Munenori Saito, Tomomi Kushima, Hideki Koshibu, Masakazu Osaka, Naoya Ohara, Makoto Fukui, Tomoyasu Ohtaki, Hirokazu Tsutomu, Hirano Yamagishi, Sho-ichi Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title | Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title_full | Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title_fullStr | Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title_full_unstemmed | Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title_short | Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
title_sort | luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6823953/ https://www.ncbi.nlm.nih.gov/pubmed/31672147 http://dx.doi.org/10.1186/s12933-019-0947-5 |
work_keys_str_mv | AT moriyusaku luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT terasakimichishige luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT hiromuramunenori luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT saitotomomi luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT kushimahideki luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT koshibumasakazu luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT osakanaoya luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT oharamakoto luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT fukuitomoyasu luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT ohtakihirokazu luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT tsutomuhirano luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling AT yamagishishoichi luseogliflozinattenuatesneointimalhyperplasiaafterwireinjuryinhighfatdietfedmiceviainhibitionofperivascularadiposetissueremodeling |