Cargando…
Principal variable selection to explain grain yield variation in winter wheat from features extracted from UAV imagery
BACKGROUND: Automated phenotyping technologies are continually advancing the breeding process. However, collecting various secondary traits throughout the growing season and processing massive amounts of data still take great efforts and time. Selecting a minimum number of secondary traits that have...
Autores principales: | Li, Jiating, Veeranampalayam-Sivakumar, Arun-Narenthiran, Bhatta, Madhav, Garst, Nicholas D., Stoll, Hannah, Stephen Baenziger, P., Belamkar, Vikas, Howard, Reka, Ge, Yufeng, Shi, Yeyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824016/ https://www.ncbi.nlm.nih.gov/pubmed/31695728 http://dx.doi.org/10.1186/s13007-019-0508-7 |
Ejemplares similares
-
Maize Tassel Detection From UAV Imagery Using Deep Learning
por: Alzadjali, Aziza, et al.
Publicado: (2021) -
Elucidating Sorghum Biomass, Nitrogen and Chlorophyll Contents With Spectral and Morphological Traits Derived From Unmanned Aircraft System
por: Li, Jiating, et al.
Publicado: (2018) -
Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat
por: Bhatta, Madhav, et al.
Publicado: (2018) -
Wheat Height Estimation Using LiDAR in Comparison to Ultrasonic Sensor and UAS
por: Yuan, Wenan, et al.
Publicado: (2018) -
Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat
por: Bhatta, Madhav, et al.
Publicado: (2018)