Cargando…
Integrate GWAS, eQTL, and mQTL Data to Identify Alzheimer’s Disease-Related Genes
It is estimated that the impact of related genes on the risk of Alzheimer’s disease (AD) is nearly 70%. Identifying candidate causal genes can help treatment and diagnosis. The maturity of sequencing technology and the reduction of cost make genome-wide association study (GWAS) become an important m...
Autores principales: | Zhao, Tianyi, Hu, Yang, Zang, Tianyi, Wang, Yadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824203/ https://www.ncbi.nlm.nih.gov/pubmed/31708967 http://dx.doi.org/10.3389/fgene.2019.01021 |
Ejemplares similares
-
Mendelian Randomization Integrating GWAS, eQTL, and mQTL Data Identified Genes Pleiotropically Associated With Atrial Fibrillation
por: Liu, Yaozhong, et al.
Publicado: (2021) -
Prioritization of nasal polyp-associated genes by integrating GWAS and eQTL summary data
por: Yoshikawa, Masahiro, et al.
Publicado: (2023) -
Non-steroidal anti-inflammatory drug target gene associations with major depressive disorders: a Mendelian randomisation study integrating GWAS, eQTL and mQTL Data
por: He, Qian, et al.
Publicado: (2023) -
Integration of GWAS and eQTL Analysis to Identify Risk Loci and Susceptibility Genes for Gastric Cancer
por: Ni, Jing, et al.
Publicado: (2020) -
Identifying Thyroid Carcinoma-Related Genes by Integrating GWAS and eQTL Data
por: Shen, Fei, et al.
Publicado: (2021)