Cargando…
Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
The development of single cell transcriptome sequencing has allowed researchers the possibility to dig inside the role of the individual cell types in a plethora of disease scenarios. It also expands to the whole transcriptome what before was only possible for a few tenths of antibodies in cell popu...
Autores principales: | Torroja, Carlos, Sanchez-Cabo, Fatima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824295/ https://www.ncbi.nlm.nih.gov/pubmed/31708961 http://dx.doi.org/10.3389/fgene.2019.00978 |
Ejemplares similares
-
Corrigendum: Digitaldlsorter: Deep-Learning on scRNA-Seq to Deconvolute Gene Expression Data
por: Torroja, Carlos, et al.
Publicado: (2020) -
SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder
por: Zhao, Jianping, et al.
Publicado: (2021) -
From multitude to singularity: An up-to-date overview of scRNA-seq data generation and analysis
por: Carangelo, Giulia, et al.
Publicado: (2022) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
The Novel Key Genes of Non-obstructive Azoospermia Affect Spermatogenesis: Transcriptomic Analysis Based on RNA-Seq and scRNA-Seq Data
por: He, Haihong, et al.
Publicado: (2021)