Cargando…
hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition
The epithelial-mesenchymal transition (EMT), in which cells undergo a switch from a polarized, epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype is fundamental during embryonic development and can be reactivated in a variety of diseases including cancer. Spatio-temporally...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824538/ https://www.ncbi.nlm.nih.gov/pubmed/31681852 http://dx.doi.org/10.20517/2394-4722.2018.85 |
_version_ | 1783464750582071296 |
---|---|
author | Grelet, Simon Howe, Philip H. |
author_facet | Grelet, Simon Howe, Philip H. |
author_sort | Grelet, Simon |
collection | PubMed |
description | The epithelial-mesenchymal transition (EMT), in which cells undergo a switch from a polarized, epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype is fundamental during embryonic development and can be reactivated in a variety of diseases including cancer. Spatio-temporally-regulated mechanisms are constantly orchestrated to allow cells to adapt to their constantly changing environments when disseminating to distant organs. Although numerous transcriptional regulatory factors are currently well-characterized, the post-transcriptional control of EMT requires continued investigation. The hnRNP E1 protein displays a major role in the control of tumor cell plasticity by regulating the translatome through multiple non-redundant mechanisms, and this role is exemplified when E1 is absent. hnRNP E1 binding to RNA molecules leads to direct or indirect translational regulation of specific sets of proteins: (1) hnRNP E1 binding to specific targets has a direct role in translation by preventing elongation of translation; (2) hnRNP E1-dependent alternative splicing can prevent the generation of a competing long non-coding RNA that acts as a decoy for microRNAs (miRNAs) involved in translational inhibition of EMT master regulators; (3) hnRNP E1 binding to the 3’ untranslated region of transcripts can also positively regulate the stability of certain mRNAs to improve their translation. Globally, hnRNP E1 appears to control proteome reprogramming during cell plasticity, either by direct or indirect regulation of protein translation. |
format | Online Article Text |
id | pubmed-6824538 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
record_format | MEDLINE/PubMed |
spelling | pubmed-68245382019-11-01 hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition Grelet, Simon Howe, Philip H. J Cancer Metastasis Treat Article The epithelial-mesenchymal transition (EMT), in which cells undergo a switch from a polarized, epithelial phenotype to a highly motile fibroblastic or mesenchymal phenotype is fundamental during embryonic development and can be reactivated in a variety of diseases including cancer. Spatio-temporally-regulated mechanisms are constantly orchestrated to allow cells to adapt to their constantly changing environments when disseminating to distant organs. Although numerous transcriptional regulatory factors are currently well-characterized, the post-transcriptional control of EMT requires continued investigation. The hnRNP E1 protein displays a major role in the control of tumor cell plasticity by regulating the translatome through multiple non-redundant mechanisms, and this role is exemplified when E1 is absent. hnRNP E1 binding to RNA molecules leads to direct or indirect translational regulation of specific sets of proteins: (1) hnRNP E1 binding to specific targets has a direct role in translation by preventing elongation of translation; (2) hnRNP E1-dependent alternative splicing can prevent the generation of a competing long non-coding RNA that acts as a decoy for microRNAs (miRNAs) involved in translational inhibition of EMT master regulators; (3) hnRNP E1 binding to the 3’ untranslated region of transcripts can also positively regulate the stability of certain mRNAs to improve their translation. Globally, hnRNP E1 appears to control proteome reprogramming during cell plasticity, either by direct or indirect regulation of protein translation. 2019-03-11 2019 /pmc/articles/PMC6824538/ /pubmed/31681852 http://dx.doi.org/10.20517/2394-4722.2018.85 Text en This article is licensed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, sharing, adaptation, distribution and reproduction in any medium or format, for any purpose, even commercially, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Grelet, Simon Howe, Philip H. hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title | hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title_full | hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title_fullStr | hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title_full_unstemmed | hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title_short | hnRNP E1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
title_sort | hnrnp e1 at the crossroads of translational regulation of epithelial-mesenchymal transition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824538/ https://www.ncbi.nlm.nih.gov/pubmed/31681852 http://dx.doi.org/10.20517/2394-4722.2018.85 |
work_keys_str_mv | AT greletsimon hnrnpe1atthecrossroadsoftranslationalregulationofepithelialmesenchymaltransition AT howephiliph hnrnpe1atthecrossroadsoftranslationalregulationofepithelialmesenchymaltransition |