Cargando…
A deep learning reconstruction framework for X-ray computed tomography with incomplete data
As a powerful imaging tool, X-ray computed tomography (CT) allows us to investigate the inner structures of specimens in a quantitative and nondestructive way. Limited by the implementation conditions, CT with incomplete projections happens quite often. Conventional reconstruction algorithms are not...
Autores principales: | Dong, Jianbing, Fu, Jian, He, Zhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824569/ https://www.ncbi.nlm.nih.gov/pubmed/31675363 http://dx.doi.org/10.1371/journal.pone.0224426 |
Ejemplares similares
-
Reconstruction of incomplete X-ray diffraction pole figures of oligocrystalline materials using deep learning
por: Meier, David, et al.
Publicado: (2023) -
Deep 3D reconstruction of synchrotron X-ray computed tomography for intact lungs
por: Shin, Seungjoo, et al.
Publicado: (2023) -
Just-in-time deep learning for real-time X-ray computed tomography
por: Graas, Adriaan, et al.
Publicado: (2023) -
Multi-Mounted X-Ray Computed Tomography
por: Fu, Jian, et al.
Publicado: (2016) -
Synthetic Data Generation for Automatic Segmentation of X-ray Computed Tomography Reconstructions of Complex Microstructures
por: Tsamos, Athanasios, et al.
Publicado: (2023)