Cargando…
Predicting atrial fibrillation in primary care using machine learning
BACKGROUND: Atrial fibrillation (AF) is the most common sustained heart arrhythmia. However, as many cases are asymptomatic, a large proportion of patients remain undiagnosed until serious complications arise. Efficient, cost-effective detection of the undiagnosed may be supported by risk-prediction...
Autores principales: | Hill, Nathan R., Ayoubkhani, Daniel, McEwan, Phil, Sugrue, Daniel M., Farooqui, Usman, Lister, Steven, Lumley, Matthew, Bakhai, Ameet, Cohen, Alexander T., O’Neill, Mark, Clifton, David, Gordon, Jason |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6824570/ https://www.ncbi.nlm.nih.gov/pubmed/31675367 http://dx.doi.org/10.1371/journal.pone.0224582 |
Ejemplares similares
-
Real‐World Associations of Renin–Angiotensin–Aldosterone System Inhibitor Dose, Hyperkalemia, and Adverse Clinical Outcomes in a Cohort of Patients With New‐Onset Chronic Kidney Disease or Heart Failure in the United Kingdom
por: Linde, Cecilia, et al.
Publicado: (2019) -
Identification of undiagnosed atrial fibrillation patients using a machine learning risk prediction algorithm and diagnostic testing (PULsE-AI): Study protocol for a randomised controlled trial
por: Hill, Nathan R., et al.
Publicado: (2020) -
Serum potassium as a predictor of adverse clinical outcomes in patients with chronic kidney disease: new risk equations using the UK clinical practice research datalink
por: Furuland, Hans, et al.
Publicado: (2018) -
Serum potassium and clinical outcomes in heart failure patients: results of risk calculations in 21 334 patients in the UK
por: Linde, Cecilia, et al.
Publicado: (2019) -
Application of a machine learning algorithm for detection of atrial fibrillation in secondary care
por: Pollock, Kevin G., et al.
Publicado: (2020)