Cargando…

Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications

Bone regeneration is of great importance worldwide, because of various bone diseases, such as infections, tumors, and resultant fracture, birth defects, and bone loss due to trauma, explosion, or accident. Bone regeneration can be achieved by several materials and templates manufactured through vari...

Descripción completa

Detalles Bibliográficos
Autores principales: Uddin, Md. Nizam, Dhanasekaran, Puttagounder S., Asmatulu, Ramazan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825629/
https://www.ncbi.nlm.nih.gov/pubmed/31630375
http://dx.doi.org/10.1007/s40204-019-00123-1
_version_ 1783464919571628032
author Uddin, Md. Nizam
Dhanasekaran, Puttagounder S.
Asmatulu, Ramazan
author_facet Uddin, Md. Nizam
Dhanasekaran, Puttagounder S.
Asmatulu, Ramazan
author_sort Uddin, Md. Nizam
collection PubMed
description Bone regeneration is of great importance worldwide, because of various bone diseases, such as infections, tumors, and resultant fracture, birth defects, and bone loss due to trauma, explosion, or accident. Bone regeneration can be achieved by several materials and templates manufactured through various fabrication techniques. Uses of different materials and scaffold fabrication techniques have been explored over the past 20 years. In this research, polyetheretherketone (PEEK) was used to fabricate highly porous bionanocomposite foams for bone scaffolding. Melt casting and salt porogen (200–500 µm size) leaching methods were adapted to create an adequate pore size and the necessary percent of porosity, because pore size plays a vital role in cell implantation and growth. Porosity (75% and 85%) of the prepared scaffolds was adjusted by changing salt concentrations in the PEEK powder. Hydroxyapatite (HA) and carbon particles were used to improve cell attachments and interactions with the porous PEEK and to increase the mechanical properties of the scaffold materials. Carbon fiber (CF) and carbon nanotubes (CNTs) were uniformly dispersed into the PEEK powder before melt casting to enhance the mechanical properties and to observe the influence of the carbon particles on the properties of PEEK bionanocomposite foam. Compression test results of the fabricated bionanocomposites showed that HA and carbon particles are the potential filler materials for the enhancement of bionanocomposite mechanical properties. About 186% enhancement of compression modulus and 43% enhancement of yield strength were observed while incorporating only 0.5 wt% of CNTs into PEEK/HA bionanocomposites having 75% porosity, compared to PEEK/HA 20 wt% bionanocomposites. Micro-computed tomography (micro-CT) test results reveal that pore size and interconnectivity of the nanocomposite foams are in order and within the designed sizes. Mechanical tests proved that PEEK bionanocomposite foam has the potential for use in bone scaffolding and other biomedical applications.
format Online
Article
Text
id pubmed-6825629
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-68256292019-11-18 Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications Uddin, Md. Nizam Dhanasekaran, Puttagounder S. Asmatulu, Ramazan Prog Biomater Original Research Bone regeneration is of great importance worldwide, because of various bone diseases, such as infections, tumors, and resultant fracture, birth defects, and bone loss due to trauma, explosion, or accident. Bone regeneration can be achieved by several materials and templates manufactured through various fabrication techniques. Uses of different materials and scaffold fabrication techniques have been explored over the past 20 years. In this research, polyetheretherketone (PEEK) was used to fabricate highly porous bionanocomposite foams for bone scaffolding. Melt casting and salt porogen (200–500 µm size) leaching methods were adapted to create an adequate pore size and the necessary percent of porosity, because pore size plays a vital role in cell implantation and growth. Porosity (75% and 85%) of the prepared scaffolds was adjusted by changing salt concentrations in the PEEK powder. Hydroxyapatite (HA) and carbon particles were used to improve cell attachments and interactions with the porous PEEK and to increase the mechanical properties of the scaffold materials. Carbon fiber (CF) and carbon nanotubes (CNTs) were uniformly dispersed into the PEEK powder before melt casting to enhance the mechanical properties and to observe the influence of the carbon particles on the properties of PEEK bionanocomposite foam. Compression test results of the fabricated bionanocomposites showed that HA and carbon particles are the potential filler materials for the enhancement of bionanocomposite mechanical properties. About 186% enhancement of compression modulus and 43% enhancement of yield strength were observed while incorporating only 0.5 wt% of CNTs into PEEK/HA bionanocomposites having 75% porosity, compared to PEEK/HA 20 wt% bionanocomposites. Micro-computed tomography (micro-CT) test results reveal that pore size and interconnectivity of the nanocomposite foams are in order and within the designed sizes. Mechanical tests proved that PEEK bionanocomposite foam has the potential for use in bone scaffolding and other biomedical applications. Springer Berlin Heidelberg 2019-10-19 /pmc/articles/PMC6825629/ /pubmed/31630375 http://dx.doi.org/10.1007/s40204-019-00123-1 Text en © The Author(s) 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
spellingShingle Original Research
Uddin, Md. Nizam
Dhanasekaran, Puttagounder S.
Asmatulu, Ramazan
Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title_full Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title_fullStr Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title_full_unstemmed Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title_short Mechanical properties of highly porous PEEK bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
title_sort mechanical properties of highly porous peek bionanocomposites incorporated with carbon and hydroxyapatite nanoparticles for scaffold applications
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825629/
https://www.ncbi.nlm.nih.gov/pubmed/31630375
http://dx.doi.org/10.1007/s40204-019-00123-1
work_keys_str_mv AT uddinmdnizam mechanicalpropertiesofhighlyporouspeekbionanocompositesincorporatedwithcarbonandhydroxyapatitenanoparticlesforscaffoldapplications
AT dhanasekaranputtagounders mechanicalpropertiesofhighlyporouspeekbionanocompositesincorporatedwithcarbonandhydroxyapatitenanoparticlesforscaffoldapplications
AT asmatuluramazan mechanicalpropertiesofhighlyporouspeekbionanocompositesincorporatedwithcarbonandhydroxyapatitenanoparticlesforscaffoldapplications