Cargando…
Improved mitochondrial stress response in long‐lived Snell dwarf mice
Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826134/ https://www.ncbi.nlm.nih.gov/pubmed/31423721 http://dx.doi.org/10.1111/acel.13030 |
_version_ | 1783465021262528512 |
---|---|
author | Ozkurede, Ulas Miller, Richard A. |
author_facet | Ozkurede, Ulas Miller, Richard A. |
author_sort | Ozkurede, Ulas |
collection | PubMed |
description | Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by mitochondrial defects. However, it is not known whether mtUPR is elevated in long‐lived mouse models. Here, we report that Snell dwarf mice, which show 30%–40% lifespan extension and prolonged healthspan, exhibit augmented mitochondrial stress responses. Cultured cells from Snell mice show elevated levels of the mitochondrial chaperone HSP60 and mitochondrial protease LONP1, two components of the mtUPR. In response to mitochondrial stress, the increase in Tfam (mitochondrial transcription factor A), a regulator of mitochondrial transcription, is higher in Snell cells, while Pgc‐1α, the main regulator of mitochondrial biogenesis, is upregulated only in Snell cells. Consistent with these differences, Snell cells maintain oxidative respiration rate, ATP content, and expression of mitochondrial‐DNA‐encoded genes after exposure to doxycycline stress. In vivo, compared to normal mice, Snell mice show stronger hepatic mtUPR induction and maintain mitochondrial protein stoichiometry after mitochondrial stress exposure. Overall, our work demonstrates that a long‐lived mouse model exhibits improved mitochondrial stress response, and provides a rationale for future mouse lifespan studies involving compounds that induce mtUPR. Further research on mitochondrial homeostasis in long‐lived mice may facilitate development of interventions that blunt mitochondrial deterioration in neurodegenerative diseases such as Alzheimer's and Parkinson's and postpone diseases of aging in humans. |
format | Online Article Text |
id | pubmed-6826134 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68261342019-12-01 Improved mitochondrial stress response in long‐lived Snell dwarf mice Ozkurede, Ulas Miller, Richard A. Aging Cell Original Articles Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by mitochondrial defects. However, it is not known whether mtUPR is elevated in long‐lived mouse models. Here, we report that Snell dwarf mice, which show 30%–40% lifespan extension and prolonged healthspan, exhibit augmented mitochondrial stress responses. Cultured cells from Snell mice show elevated levels of the mitochondrial chaperone HSP60 and mitochondrial protease LONP1, two components of the mtUPR. In response to mitochondrial stress, the increase in Tfam (mitochondrial transcription factor A), a regulator of mitochondrial transcription, is higher in Snell cells, while Pgc‐1α, the main regulator of mitochondrial biogenesis, is upregulated only in Snell cells. Consistent with these differences, Snell cells maintain oxidative respiration rate, ATP content, and expression of mitochondrial‐DNA‐encoded genes after exposure to doxycycline stress. In vivo, compared to normal mice, Snell mice show stronger hepatic mtUPR induction and maintain mitochondrial protein stoichiometry after mitochondrial stress exposure. Overall, our work demonstrates that a long‐lived mouse model exhibits improved mitochondrial stress response, and provides a rationale for future mouse lifespan studies involving compounds that induce mtUPR. Further research on mitochondrial homeostasis in long‐lived mice may facilitate development of interventions that blunt mitochondrial deterioration in neurodegenerative diseases such as Alzheimer's and Parkinson's and postpone diseases of aging in humans. John Wiley and Sons Inc. 2019-08-18 2019-12 /pmc/articles/PMC6826134/ /pubmed/31423721 http://dx.doi.org/10.1111/acel.13030 Text en © 2019 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Ozkurede, Ulas Miller, Richard A. Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title | Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title_full | Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title_fullStr | Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title_full_unstemmed | Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title_short | Improved mitochondrial stress response in long‐lived Snell dwarf mice |
title_sort | improved mitochondrial stress response in long‐lived snell dwarf mice |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826134/ https://www.ncbi.nlm.nih.gov/pubmed/31423721 http://dx.doi.org/10.1111/acel.13030 |
work_keys_str_mv | AT ozkuredeulas improvedmitochondrialstressresponseinlonglivedsnelldwarfmice AT millerricharda improvedmitochondrialstressresponseinlonglivedsnelldwarfmice |