Cargando…
Hyperinsulinaemia: does it tip the balance toward intrahepatic fat accumulation?
In health, the liver is metabolically flexible over the course of the day, as it undertakes a multitude of physiological processes including the regulation of intrahepatic and systemic glucose and lipid levels. The liver is the first organ to receive insulin and through a cascade of complex metaboli...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bioscientifica Ltd
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826170/ https://www.ncbi.nlm.nih.gov/pubmed/31581129 http://dx.doi.org/10.1530/EC-19-0350 |
Sumario: | In health, the liver is metabolically flexible over the course of the day, as it undertakes a multitude of physiological processes including the regulation of intrahepatic and systemic glucose and lipid levels. The liver is the first organ to receive insulin and through a cascade of complex metabolic processes, insulin not only plays a key role in the intrahepatic regulation of glucose and lipid metabolism, but also in the regulation of systemic glucose and lipid concentrations. Thus, when intrahepatic insulin signalling becomes aberrant then this may lead to perturbations in intrahepatic metabolic processes that have the potential to impact on metabolic health. For example, obesity is associated with intrahepatic fat accumulation (known as nonalcoholic liver disease (NAFLD)) and hyperinsulinaemia, the latter as a result of insulin hypersecretion or impaired hepatic insulin extraction. Although insulin signalling directly alters intra- and extrahepatic metabolism, the regulation of hepatic glucose and fatty acid metabolism is also indirectly driven by substrate availability. Here we discuss the direct and indirect effects of insulin on intrahepatic processes such as the synthesis of fatty acids and peripherally regulating the flux of fatty acids to the liver; processes that may play a role in the development of insulin resistance and/or intrahepatocellular triacylglycerol (IHTAG) accumulation in humans. |
---|