Cargando…

Ontogeny of the specificity of gonadotropin receptors and gene expression in carp

The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are the principle endocrine drivers of reproductive processes in the gonads of jawed vertebrates. Canonically, FSH recruits and maintains selected ovarian follicles for maturation and LH induces the stages...

Descripción completa

Detalles Bibliográficos
Autores principales: Hollander-Cohen, Lian, Böhm, Benjamin, Hausken, Krist, Levavi-Sivan, Berta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bioscientifica Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826172/
https://www.ncbi.nlm.nih.gov/pubmed/31581128
http://dx.doi.org/10.1530/EC-19-0389
_version_ 1783465030502580224
author Hollander-Cohen, Lian
Böhm, Benjamin
Hausken, Krist
Levavi-Sivan, Berta
author_facet Hollander-Cohen, Lian
Böhm, Benjamin
Hausken, Krist
Levavi-Sivan, Berta
author_sort Hollander-Cohen, Lian
collection PubMed
description The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are the principle endocrine drivers of reproductive processes in the gonads of jawed vertebrates. Canonically, FSH recruits and maintains selected ovarian follicles for maturation and LH induces the stages of germinal vesicle breakdown and ovulation. In mammals, LH and FSH specifically activate cognate G-protein-coupled receptors that affect the proteins involved in steroidogenesis, protein hormone synthesis, and gametogenesis. This dual-gonadotropin model also exists in some fish species, but not in all. In fact, due to their diverse number of species, extended number of ecological niches, and remarkably flexible reproductive strategies, fish are appropriate as models to understand the co-evolution of gonadotropins and their receptors. In this study, we cloned and characterized the expression profile over the final stages of ovarian maturation of carp (Cyprinus carpio) LHCGR and FSHR. Expression of both gonadotropin receptors increased in the later stage of early vitellogenesis, suggesting that both LH and FSH play a role in the development of mature follicles. We additionally tested the activation of cLHCGR and cFSHR using homologous and heterologous recombinant gonadotropins in order to gain insight into an evolutionary model of permissive gonadotropin receptor function. These data suggest that carp (Cyprinus carpio) gonad development and maturation depends on a specific gonadotropin profile that does not reflect the temporally distinct dual-gonadotropin model observed in salmonids or mammals, and that permissive gonadotropin receptor activation is a specific feature of Ostariophysi, not all teleosts.
format Online
Article
Text
id pubmed-6826172
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Bioscientifica Ltd
record_format MEDLINE/PubMed
spelling pubmed-68261722019-11-07 Ontogeny of the specificity of gonadotropin receptors and gene expression in carp Hollander-Cohen, Lian Böhm, Benjamin Hausken, Krist Levavi-Sivan, Berta Endocr Connect Research The pituitary gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), are the principle endocrine drivers of reproductive processes in the gonads of jawed vertebrates. Canonically, FSH recruits and maintains selected ovarian follicles for maturation and LH induces the stages of germinal vesicle breakdown and ovulation. In mammals, LH and FSH specifically activate cognate G-protein-coupled receptors that affect the proteins involved in steroidogenesis, protein hormone synthesis, and gametogenesis. This dual-gonadotropin model also exists in some fish species, but not in all. In fact, due to their diverse number of species, extended number of ecological niches, and remarkably flexible reproductive strategies, fish are appropriate as models to understand the co-evolution of gonadotropins and their receptors. In this study, we cloned and characterized the expression profile over the final stages of ovarian maturation of carp (Cyprinus carpio) LHCGR and FSHR. Expression of both gonadotropin receptors increased in the later stage of early vitellogenesis, suggesting that both LH and FSH play a role in the development of mature follicles. We additionally tested the activation of cLHCGR and cFSHR using homologous and heterologous recombinant gonadotropins in order to gain insight into an evolutionary model of permissive gonadotropin receptor function. These data suggest that carp (Cyprinus carpio) gonad development and maturation depends on a specific gonadotropin profile that does not reflect the temporally distinct dual-gonadotropin model observed in salmonids or mammals, and that permissive gonadotropin receptor activation is a specific feature of Ostariophysi, not all teleosts. Bioscientifica Ltd 2019-10-02 /pmc/articles/PMC6826172/ /pubmed/31581128 http://dx.doi.org/10.1530/EC-19-0389 Text en © 2019 The authors http://creativecommons.org/licenses/by-nc/4.0/ This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) .
spellingShingle Research
Hollander-Cohen, Lian
Böhm, Benjamin
Hausken, Krist
Levavi-Sivan, Berta
Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title_full Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title_fullStr Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title_full_unstemmed Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title_short Ontogeny of the specificity of gonadotropin receptors and gene expression in carp
title_sort ontogeny of the specificity of gonadotropin receptors and gene expression in carp
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826172/
https://www.ncbi.nlm.nih.gov/pubmed/31581128
http://dx.doi.org/10.1530/EC-19-0389
work_keys_str_mv AT hollandercohenlian ontogenyofthespecificityofgonadotropinreceptorsandgeneexpressionincarp
AT bohmbenjamin ontogenyofthespecificityofgonadotropinreceptorsandgeneexpressionincarp
AT hauskenkrist ontogenyofthespecificityofgonadotropinreceptorsandgeneexpressionincarp
AT levavisivanberta ontogenyofthespecificityofgonadotropinreceptorsandgeneexpressionincarp