Cargando…

Mechanochemical Preparations of Anion Coordinated Architectures Based on 3‐Iodoethynylpyridine and 3‐Iodoethynylbenzoic Acid

The halogen bond has previously been explored as a versatile tool in crystal engineering and anion coordination chemistry, with mechanochemical synthetic techniques having been shown to provide convenient routes towards cocrystals. In an effort to expand our knowledge on the role of halogen bonding...

Descripción completa

Detalles Bibliográficos
Autores principales: Morin, Vincent M., Szell, Patrick M. J., Caron‐Poulin, Estelle, Gabidullin, Bulat, Bryce, David L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826240/
https://www.ncbi.nlm.nih.gov/pubmed/31692837
http://dx.doi.org/10.1002/open.201900194
Descripción
Sumario:The halogen bond has previously been explored as a versatile tool in crystal engineering and anion coordination chemistry, with mechanochemical synthetic techniques having been shown to provide convenient routes towards cocrystals. In an effort to expand our knowledge on the role of halogen bonding in anion coordination, here we explore a series of cocrystals formed between 3‐iodoethynylpyridine and 3‐iodoethynylbenzoic acid with halide salts. In total, we report the single‐crystal X‐ray structures of six new cocrystals prepared by mechanochemical ball milling, with all structures exhibiting C≡C−I⋅⋅⋅X(−) (X=Cl, Br) halogen bonds. Whereas cocrystals featuring a pyridine group favoured the formation of discrete entities, cocrystals featuring a benzoic acid group yielded an alternation of halogen and hydrogen bonds. The compounds studied herein were further characterized by (13)C and (31)P solid‐state nuclear magnetic resonance, with the chemical shifts offering a clear and convenient method of identifying the occurrence of halogen bonding, using the crude product obtained directly from the mechanochemical ball milling. Whereas the (31)P chemical shifts were quickly able to identify the occurrence of cocrystallization, (13)C solid‐state NMR was diagnostic of both the occurrence of halogen bonding and of hydrogen bonding.