Cargando…

Computational analysis of size, shape and structure of insect wings

The size, shape and structure of insect wings are intimately linked to their ability to fly. However, there are few systematic studies of the variability of the natural patterns in wing morphology across insects. We have assembled a dataset of 789 insect wings with representatives from 25 families a...

Descripción completa

Detalles Bibliográficos
Autores principales: Salcedo, Mary K., Hoffmann, Jordan, Donoughe, Seth, Mahadevan, L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826288/
https://www.ncbi.nlm.nih.gov/pubmed/31628142
http://dx.doi.org/10.1242/bio.040774
Descripción
Sumario:The size, shape and structure of insect wings are intimately linked to their ability to fly. However, there are few systematic studies of the variability of the natural patterns in wing morphology across insects. We have assembled a dataset of 789 insect wings with representatives from 25 families and performed a comprehensive computational analysis of their morphology using topological and geometric notions in terms of (i) wing size and contour shape, (ii) vein topology, and (iii) shape and distribution of wing membrane domains. These morphospaces are complementary to existing methods for quantitatively characterizing wing morphology and are likely to be useful for investigating wing function and evolution. This Methods and Techniques paper is accompanied by a set of computational tools for open use. This article has an associated First Person interview with the first author of the paper.