Cargando…
Relationship between Selenium and Hematological Markers in Young Adults with Normal Weight or Overweight/Obesity
Selenium deficiency has been linked to anemia of inflammation, which is mediated by hepcidin. However, there are few studies providing evidence of the role of hepcidin in this relationship. In this study, we investigated the interrelationships among selenium biomarkers, hepcidin concentration, and i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826354/ https://www.ncbi.nlm.nih.gov/pubmed/31597392 http://dx.doi.org/10.3390/antiox8100463 |
Sumario: | Selenium deficiency has been linked to anemia of inflammation, which is mediated by hepcidin. However, there are few studies providing evidence of the role of hepcidin in this relationship. In this study, we investigated the interrelationships among selenium biomarkers, hepcidin concentration, and iron status among individuals with overweight/obesity compared to their normal weight counterparts, since obesity is associated with chronic inflammation. A total of 59 college students were recruited for this study. Fasting blood samples were collected for the analysis of iron status, plasma selenoproteins (glutathione peroxidase (GPX) activity and selenoprotein P (SEPP1)), and plasma hepcidin. Subjects completed three-day dietary records to determine average daily nutrient intakes. SEPP1 concentration, GPX activity, and iron status biomarkers (serum iron, transferrin saturation, and hemoglobin concentration) were lower among individuals with overweight/obesity compared with individuals with normal weight, but these differences were not significant (p > 0.05). Regression analysis showed that GPX activity (β = −0.018, p = 0.008) and SEPP1 concentration (β = −1.24, p = 0.03) were inversely associated with hepcidin concentration. The inverse association between selenoproteins and hepcidin concentration supports a potential role of hepcidin as a mediator between selenium and iron status and warrants further studies to better understand this relationship. |
---|