Cargando…
Efficacy of Cell-Based Therapies for Traumatic Brain Injuries
Traumatic brain injuries (TBIs) are a leading cause of death and disability. Additionally, growing evidence suggests a link between TBI-induced neuroinflammation and neurodegenerative disorders. Treatments for TBI patients are limited, largely focused on rehabilitation therapy, and ultimately, fail...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826445/ https://www.ncbi.nlm.nih.gov/pubmed/31658732 http://dx.doi.org/10.3390/brainsci9100270 |
Sumario: | Traumatic brain injuries (TBIs) are a leading cause of death and disability. Additionally, growing evidence suggests a link between TBI-induced neuroinflammation and neurodegenerative disorders. Treatments for TBI patients are limited, largely focused on rehabilitation therapy, and ultimately, fail to provide long-term neuroprotective or neurorestorative benefits. Because of the prevalence of TBI and lack of viable treatments, new therapies are needed which can promote neurological recovery. Cell-based treatments are a promising avenue because of their potential to provide multiple therapeutic benefits. Cell-based therapies can promote neuroprotection via modulation of inflammation and promote neurorestoration via induction of angiogenesis and neurogenesis. Neural stem/progenitor cell transplantations have been investigated in preclinical TBI models for their ability to directly contribute to neuroregeneration, form neural-like cells, and improve recovery. Mesenchymal stem cells (MSCs) have been investigated in clinical trials through multiple different routes of administration. Intravenous administration of MSCs appears most promising, demonstrating a robust safety profile, correlation with neurological improvements, and reductions in systemic inflammation following TBI. While still preliminary, evidence suggests cell-based therapies may become a viable treatment for TBI based on their ability to promote neuroregeneration and reduce inflammation. |
---|