Cargando…

Effects of Chromium-Loaded Chitosan Nanoparticles on the Intestinal Electrophysiological Indices and Glucose Transporters in Broilers

SIMPLE SUMMARY: Chromium is an important trace element responsible for the metabolism of glucose by enhancing insulin activity. This study was planned to evaluate the effects of chromium-loaded chitosan nanoparticles on the transport of glucose or amino acid across jejunum, gene expression of glucos...

Descripción completa

Detalles Bibliográficos
Autores principales: Tahir, Sajid Khan, Yousaf, Muhammad Shahbaz, Ahmad, Sohrab, Shahzad, Muhammad Khurram, Khan, Ather Farooq, Raza, Mohsin, Majeed, Khalid Abdul, Khalid, Abia, Zaneb, Hafsa, Rabbani, Imtiaz, Rehman, Habib
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826477/
https://www.ncbi.nlm.nih.gov/pubmed/31627287
http://dx.doi.org/10.3390/ani9100819
Descripción
Sumario:SIMPLE SUMMARY: Chromium is an important trace element responsible for the metabolism of glucose by enhancing insulin activity. This study was planned to evaluate the effects of chromium-loaded chitosan nanoparticles on the transport of glucose or amino acid across jejunum, gene expression of glucose transporters, and glycogen contents of liver and muscle. The results revealed that an increase in the supplemented dose of chromium-loaded chitosan nanoparticles decreased liver glycogen content and glucose transport across jejunum, while the muscle glycogen, gene expression of glucose transporters, and amino acid transport remained unaffected. ABSTRACT: The present study aimed to evaluate the effect of chromium-loaded chitosan nanoparticles (Cr-CNPs) on the electrophysiological indices, gene expression of glucose transporters, and tissue glycogen in broilers. A total of 200 one-day-old broilers were randomly divided into five groups, with each having five replicates (n = 8). Group A was fed a corn–soybean meal diet, while the diets of groups B, C, D, and E were supplemented with 200, 400, 800, and 1200 µg/kg of Cr as Cr-CNPs, respectively. On day 35, the jejunum was collected for electrophysiological study, gene expression of glucose transporters, and tissues glycogen determination. The basal short-circuit current and tissue conductance before the addition of glucose was the same in all groups. Following the addition of glucose, the change in short-circuit current decreased (p < 0.05) in the jejunal tissues of birds supplemented with 400 and 1200 µg Cr-CNPs compared with the control group. Gene expression of SGLT-1 and GLUT-2 remained unaffected with supplementation. The serum glucose and liver glycogen concentration decreased (p < 0.05) linearly with supplementation, while no effect was observed on muscle glycogen. In conclusion, Cr-CNPs supplementation decreases the glucose absorption and liver glycogen content, without affecting the gene expression of glucose transporters.