Cargando…
Genome-Wide Association Study for Reproductive Traits in a Duroc Pig Population
SIMPLE SUMMARY: Reproductive traits are economically important in the pig industry, and it is critical to explore their underlying genetic architecture. Hence, four reproductive traits, including litter size at birth (LSB), litter weight at birth (LWB), litter size at weaning (LSW), and litter weigh...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826494/ https://www.ncbi.nlm.nih.gov/pubmed/31561612 http://dx.doi.org/10.3390/ani9100732 |
Sumario: | SIMPLE SUMMARY: Reproductive traits are economically important in the pig industry, and it is critical to explore their underlying genetic architecture. Hence, four reproductive traits, including litter size at birth (LSB), litter weight at birth (LWB), litter size at weaning (LSW), and litter weight at weaning (LWW), were examined. Through a genome-wide association study in a Duroc pig herd, several candidate single-nucleotide polymorphisms (SNPs) and genes were found potentially associated with the traits of interest. These findings help to understand the genetic basis of porcine reproductive traits and could be applied in pig breeding programs. ABSTRACT: In the pig industry, reproductive traits constantly influence the production efficiency. To identify markers and candidate genes underlying porcine reproductive traits, a genome-wide association study (GWAS) was performed in a Duroc pig population. In total, 1067 pigs were genotyped using single-nucleotide polymorphism (SNP) chips, and four reproductive traits, including litter size at birth (LSB), litter weight at birth (LWB), litter size at weaning (LSW), and litter weight at weaning (LWW), were examined. The results showed that 20 potential SNPs reached the level of suggestive significance and were associated with these traits of interest. Several important candidate genes, including TXN2, KCNA1, ENSSSCG00000003546, ZDHHC18, MAP2K6, BICC1, FAM135B, EPHB2, SEMA4D, ST3GAL1, KCTD3, FAM110A, TMEM132D, TBX3, and FAM110A, were identified and might compose the underlying genetic architecture of porcine reproductive traits. These findings help to understand the genetic basis of porcine reproductive traits and provide important information for molecular breeding in pigs. |
---|