Cargando…

Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation

Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollinati...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Chen, Saunders, Richard M. K., Deng, Nan, Wan, Tao, Su, Yingjuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826882/
https://www.ncbi.nlm.nih.gov/pubmed/31614866
http://dx.doi.org/10.3390/genes10100800
_version_ 1783465196416663552
author Hou, Chen
Saunders, Richard M. K.
Deng, Nan
Wan, Tao
Su, Yingjuan
author_facet Hou, Chen
Saunders, Richard M. K.
Deng, Nan
Wan, Tao
Su, Yingjuan
author_sort Hou, Chen
collection PubMed
description Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms.
format Online
Article
Text
id pubmed-6826882
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-68268822019-11-18 Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation Hou, Chen Saunders, Richard M. K. Deng, Nan Wan, Tao Su, Yingjuan Genes (Basel) Article Gnetum possesses morphologically bisexual but functionally unisexual reproductive structures that exude sugary pollination drops to attract insects. Previous studies have revealed that the arborescent species (G. gnemon L.) and the lianoid species (G. luofuense C.Y.Cheng) possess different pollination syndromes. This study compared the proteome in the pollination drops of these two species using label-free quantitative techniques. The transcriptomes of fertile reproductive units (FRUs) and sterile reproductive units (SRUs) for each species were furthermore compared using Illumina Hiseq sequencing, and integrated proteomic and transcriptomic analyses were subsequently performed. Our results show that the differentially expressed proteins between FRUs and SRUs were involved in carbohydrate metabolism, the biosynthesis of amino acids and ovule defense. In addition, the differentially expressed genes between the FRUs and SRUs (e.g., MADS-box genes) were engaged in reproductive development and the formation of pollination drops. The integrated protein-transcript analyses revealed that FRUs and their exudates were relatively conservative while the SRUs and their exudates were more diverse, probably functioning as pollinator attractants. The evolution of reproductive organs appears to be synchronized with changes in the pollination drop proteome of Gnetum, suggesting that insect-pollinated adaptations are not restricted to angiosperms but also occur in gymnosperms. MDPI 2019-10-12 /pmc/articles/PMC6826882/ /pubmed/31614866 http://dx.doi.org/10.3390/genes10100800 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Hou, Chen
Saunders, Richard M. K.
Deng, Nan
Wan, Tao
Su, Yingjuan
Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title_full Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title_fullStr Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title_full_unstemmed Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title_short Pollination Drop Proteome and Reproductive Organ Transcriptome Comparison in Gnetum Reveals Entomophilous Adaptation
title_sort pollination drop proteome and reproductive organ transcriptome comparison in gnetum reveals entomophilous adaptation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6826882/
https://www.ncbi.nlm.nih.gov/pubmed/31614866
http://dx.doi.org/10.3390/genes10100800
work_keys_str_mv AT houchen pollinationdropproteomeandreproductiveorgantranscriptomecomparisoningnetumrevealsentomophilousadaptation
AT saundersrichardmk pollinationdropproteomeandreproductiveorgantranscriptomecomparisoningnetumrevealsentomophilousadaptation
AT dengnan pollinationdropproteomeandreproductiveorgantranscriptomecomparisoningnetumrevealsentomophilousadaptation
AT wantao pollinationdropproteomeandreproductiveorgantranscriptomecomparisoningnetumrevealsentomophilousadaptation
AT suyingjuan pollinationdropproteomeandreproductiveorgantranscriptomecomparisoningnetumrevealsentomophilousadaptation