Cargando…
Detection of Microaneurysms in Fundus Images Based on an Attention Mechanism
Microaneurysms (MAs) are the earliest detectable diabetic retinopathy (DR) lesions. Thus, the ability to automatically detect MAs is critical for the early diagnosis of DR. However, achieving the accurate and reliable detection of MAs remains a significant challenge due to the size and complexity of...
Autores principales: | Zhang, Lizong, Feng, Shuxin, Duan, Guiduo, Li, Ying, Liu, Guisong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827155/ https://www.ncbi.nlm.nih.gov/pubmed/31627420 http://dx.doi.org/10.3390/genes10100817 |
Ejemplares similares
-
Automatic Detection of Microaneurysms in Fundus Images Using an Ensemble-Based Segmentation Method
por: Raudonis, Vidas, et al.
Publicado: (2023) -
Fundus images analysis using deep features for detection of exudates, hemorrhages and microaneurysms
por: Khojasteh, Parham, et al.
Publicado: (2018) -
Microaneurysms detection in color fundus images using machine learning based on directional local contrast
por: Long, Shengchun, et al.
Publicado: (2020) -
Microaneurysm detection in fundus images using a two-step convolutional neural network
por: Eftekhari, Noushin, et al.
Publicado: (2019) -
Deep Learning Approach for Automatic Microaneurysms Detection
por: Mateen, Muhammad, et al.
Publicado: (2022)