Cargando…
A Pan-Cancer Approach to Predict Responsiveness to Immune Checkpoint Inhibitors by Machine Learning
Immunotherapy by using immune checkpoint inhibitors (ICI) has dramatically improved the treatment options in various cancers, increasing survival rates for treated patients. Nevertheless, there are heterogeneous response rates to ICI among different cancer types, and even in the context of patients...
Autores principales: | Polano, Maurizio, Chierici, Marco, Dal Bo, Michele, Gentilini, Davide, Di Cintio, Federica, Baboci, Lorena, Gibbs, David L., Furlanello, Cesare, Toffoli, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827166/ https://www.ncbi.nlm.nih.gov/pubmed/31618839 http://dx.doi.org/10.3390/cancers11101562 |
Ejemplares similares
-
The Molecular and Microenvironmental Landscape of Glioblastomas: Implications for the Novel Treatment Choices
por: Di Cintio, Federica, et al.
Publicado: (2020) -
New Insight into Therapies Targeting Angiogenesis in Hepatocellular Carcinoma
por: Mossenta, Monica, et al.
Publicado: (2019) -
A New Epigenetic Model to Stratify Glioma Patients According to Their Immunosuppressive State
por: Polano, Maurizio, et al.
Publicado: (2021) -
A Novel Epigenetic Machine Learning Model to Define Risk of Progression for Hepatocellular Carcinoma Patients
por: Bedon, Luca, et al.
Publicado: (2021) -
Machine learning to improve interpretability of clinical, radiological and panel-based genomic data of glioma grade 4 patients undergoing surgical resection
por: Dal Bo, Michele, et al.
Publicado: (2023)