Cargando…

An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera

Tartaric acid has high economic value as an antioxidant and flavorant in food and wine industries. l-Tartaric acid biosynthesis in wine grape (Vitis vinifera) uses ascorbic acid (vitamin C) as precursor, representing an unusual metabolic fate for ascorbic acid degradation. Reduction of the ascorbate...

Descripción completa

Detalles Bibliográficos
Autores principales: Jia, Yong, Burbidge, Crista A., Sweetman, Crystal, Schutz, Emi, Soole, Kathy, Jenkins, Colin, Hancock, Robert D., Bruning, John B., Ford, Christopher M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827314/
https://www.ncbi.nlm.nih.gov/pubmed/31488549
http://dx.doi.org/10.1074/jbc.RA119.010196
_version_ 1783465286863683584
author Jia, Yong
Burbidge, Crista A.
Sweetman, Crystal
Schutz, Emi
Soole, Kathy
Jenkins, Colin
Hancock, Robert D.
Bruning, John B.
Ford, Christopher M.
author_facet Jia, Yong
Burbidge, Crista A.
Sweetman, Crystal
Schutz, Emi
Soole, Kathy
Jenkins, Colin
Hancock, Robert D.
Bruning, John B.
Ford, Christopher M.
author_sort Jia, Yong
collection PubMed
description Tartaric acid has high economic value as an antioxidant and flavorant in food and wine industries. l-Tartaric acid biosynthesis in wine grape (Vitis vinifera) uses ascorbic acid (vitamin C) as precursor, representing an unusual metabolic fate for ascorbic acid degradation. Reduction of the ascorbate breakdown product 2-keto-l-gulonic acid to l-idonic acid constitutes a critical step in this l-tartaric acid biosynthetic pathway. However, the underlying enzymatic mechanisms remain obscure. Here, we identified a V. vinifera aldo-keto reductase, Vv2KGR, with 2-keto-l-gulonic acid reductase activity. Vv2KGR belongs to the d-isomer–specific 2-hydroxyacid dehydrogenase superfamily and displayed the highest similarity to the hydroxyl pyruvate reductase isoform 2 in Arabidopsis thaliana. Enzymatic analyses revealed that Vv2KGR efficiently reduces 2-keto-l-gulonic acid to l-idonic acid and uses NADPH as preferred coenzyme. Moreover, Vv2KGR exhibited broad substrate specificity toward glyoxylate, pyruvate, and hydroxypyruvate, having the highest catalytic efficiency for glyoxylate. We further determined the X-ray crystal structure of Vv2KGR at 1.58 Å resolution. Comparison of the Vv2KGR structure with those of d-isomer–specific 2-hydroxyacid dehydrogenases from animals and microorganisms revealed several unique structural features of this plant hydroxyl pyruvate reductase. Substrate structural analysis indicated that Vv2KGR uses two modes (A and B) to bind different substrates. 2-Keto-l-gulonic acid displayed the lowest predicted free-energy binding to Vv2KGR among all docked substrates. Hence, we propose that Vv2KGR functions in l-tartaric acid biosynthesis. To the best of our knowledge, this is the first report of a d-isomer–specific 2-hydroxyacid dehydrogenase that reduces 2-keto-l-gulonic acid to l-idonic acid in plants.
format Online
Article
Text
id pubmed-6827314
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-68273142019-11-05 An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera Jia, Yong Burbidge, Crista A. Sweetman, Crystal Schutz, Emi Soole, Kathy Jenkins, Colin Hancock, Robert D. Bruning, John B. Ford, Christopher M. J Biol Chem Plant Biology Tartaric acid has high economic value as an antioxidant and flavorant in food and wine industries. l-Tartaric acid biosynthesis in wine grape (Vitis vinifera) uses ascorbic acid (vitamin C) as precursor, representing an unusual metabolic fate for ascorbic acid degradation. Reduction of the ascorbate breakdown product 2-keto-l-gulonic acid to l-idonic acid constitutes a critical step in this l-tartaric acid biosynthetic pathway. However, the underlying enzymatic mechanisms remain obscure. Here, we identified a V. vinifera aldo-keto reductase, Vv2KGR, with 2-keto-l-gulonic acid reductase activity. Vv2KGR belongs to the d-isomer–specific 2-hydroxyacid dehydrogenase superfamily and displayed the highest similarity to the hydroxyl pyruvate reductase isoform 2 in Arabidopsis thaliana. Enzymatic analyses revealed that Vv2KGR efficiently reduces 2-keto-l-gulonic acid to l-idonic acid and uses NADPH as preferred coenzyme. Moreover, Vv2KGR exhibited broad substrate specificity toward glyoxylate, pyruvate, and hydroxypyruvate, having the highest catalytic efficiency for glyoxylate. We further determined the X-ray crystal structure of Vv2KGR at 1.58 Å resolution. Comparison of the Vv2KGR structure with those of d-isomer–specific 2-hydroxyacid dehydrogenases from animals and microorganisms revealed several unique structural features of this plant hydroxyl pyruvate reductase. Substrate structural analysis indicated that Vv2KGR uses two modes (A and B) to bind different substrates. 2-Keto-l-gulonic acid displayed the lowest predicted free-energy binding to Vv2KGR among all docked substrates. Hence, we propose that Vv2KGR functions in l-tartaric acid biosynthesis. To the best of our knowledge, this is the first report of a d-isomer–specific 2-hydroxyacid dehydrogenase that reduces 2-keto-l-gulonic acid to l-idonic acid in plants. American Society for Biochemistry and Molecular Biology 2019-11-01 2019-09-04 /pmc/articles/PMC6827314/ /pubmed/31488549 http://dx.doi.org/10.1074/jbc.RA119.010196 Text en © 2019 Jia et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Plant Biology
Jia, Yong
Burbidge, Crista A.
Sweetman, Crystal
Schutz, Emi
Soole, Kathy
Jenkins, Colin
Hancock, Robert D.
Bruning, John B.
Ford, Christopher M.
An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title_full An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title_fullStr An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title_full_unstemmed An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title_short An aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin C in Vitis vinifera
title_sort aldo-keto reductase with 2-keto-l-gulonate reductase activity functions in l-tartaric acid biosynthesis from vitamin c in vitis vinifera
topic Plant Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827314/
https://www.ncbi.nlm.nih.gov/pubmed/31488549
http://dx.doi.org/10.1074/jbc.RA119.010196
work_keys_str_mv AT jiayong analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT burbidgecristaa analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT sweetmancrystal analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT schutzemi analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT soolekathy analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT jenkinscolin analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT hancockrobertd analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT bruningjohnb analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT fordchristopherm analdoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT jiayong aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT burbidgecristaa aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT sweetmancrystal aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT schutzemi aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT soolekathy aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT jenkinscolin aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT hancockrobertd aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT bruningjohnb aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera
AT fordchristopherm aldoketoreductasewith2ketolgulonatereductaseactivityfunctionsinltartaricacidbiosynthesisfromvitamincinvitisvinifera