Cargando…
Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitat...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827825/ https://www.ncbi.nlm.nih.gov/pubmed/31190077 http://dx.doi.org/10.1093/neuonc/noz106 |
_version_ | 1783465350804799488 |
---|---|
author | Chang, Ken Beers, Andrew L Bai, Harrison X Brown, James M Ly, K Ina Li, Xuejun Senders, Joeky T Kavouridis, Vasileios K Boaro, Alessandro Su, Chang Bi, Wenya Linda Rapalino, Otto Liao, Weihua Shen, Qin Zhou, Hao Xiao, Bo Wang, Yinyan Zhang, Paul J Pinho, Marco C Wen, Patrick Y Batchelor, Tracy T Boxerman, Jerrold L Arnaout, Omar Rosen, Bruce R Gerstner, Elizabeth R Yang, Li Huang, Raymond Y Kalpathy-Cramer, Jayashree |
author_facet | Chang, Ken Beers, Andrew L Bai, Harrison X Brown, James M Ly, K Ina Li, Xuejun Senders, Joeky T Kavouridis, Vasileios K Boaro, Alessandro Su, Chang Bi, Wenya Linda Rapalino, Otto Liao, Weihua Shen, Qin Zhou, Hao Xiao, Bo Wang, Yinyan Zhang, Paul J Pinho, Marco C Wen, Patrick Y Batchelor, Tracy T Boxerman, Jerrold L Arnaout, Omar Rosen, Bruce R Gerstner, Elizabeth R Yang, Li Huang, Raymond Y Kalpathy-Cramer, Jayashree |
author_sort | Chang, Ken |
collection | PubMed |
description | BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). METHODS: Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. RESULTS: The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. CONCLUSIONS: Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation. |
format | Online Article Text |
id | pubmed-6827825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-68278252019-11-12 Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement Chang, Ken Beers, Andrew L Bai, Harrison X Brown, James M Ly, K Ina Li, Xuejun Senders, Joeky T Kavouridis, Vasileios K Boaro, Alessandro Su, Chang Bi, Wenya Linda Rapalino, Otto Liao, Weihua Shen, Qin Zhou, Hao Xiao, Bo Wang, Yinyan Zhang, Paul J Pinho, Marco C Wen, Patrick Y Batchelor, Tracy T Boxerman, Jerrold L Arnaout, Omar Rosen, Bruce R Gerstner, Elizabeth R Yang, Li Huang, Raymond Y Kalpathy-Cramer, Jayashree Neuro Oncol Basic and Translational Investigations BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). METHODS: Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. RESULTS: The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. CONCLUSIONS: Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation. Oxford University Press 2019-11 2019-06-13 /pmc/articles/PMC6827825/ /pubmed/31190077 http://dx.doi.org/10.1093/neuonc/noz106 Text en The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Basic and Translational Investigations Chang, Ken Beers, Andrew L Bai, Harrison X Brown, James M Ly, K Ina Li, Xuejun Senders, Joeky T Kavouridis, Vasileios K Boaro, Alessandro Su, Chang Bi, Wenya Linda Rapalino, Otto Liao, Weihua Shen, Qin Zhou, Hao Xiao, Bo Wang, Yinyan Zhang, Paul J Pinho, Marco C Wen, Patrick Y Batchelor, Tracy T Boxerman, Jerrold L Arnaout, Omar Rosen, Bruce R Gerstner, Elizabeth R Yang, Li Huang, Raymond Y Kalpathy-Cramer, Jayashree Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title | Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title_full | Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title_fullStr | Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title_full_unstemmed | Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title_short | Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
title_sort | automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement |
topic | Basic and Translational Investigations |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827825/ https://www.ncbi.nlm.nih.gov/pubmed/31190077 http://dx.doi.org/10.1093/neuonc/noz106 |
work_keys_str_mv | AT changken automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT beersandrewl automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT baiharrisonx automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT brownjamesm automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT lykina automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT lixuejun automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT sendersjoekyt automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT kavouridisvasileiosk automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT boaroalessandro automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT suchang automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT biwenyalinda automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT rapalinootto automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT liaoweihua automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT shenqin automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT zhouhao automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT xiaobo automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT wangyinyan automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT zhangpaulj automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT pinhomarcoc automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT wenpatricky automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT batchelortracyt automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT boxermanjerroldl automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT arnaoutomar automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT rosenbrucer automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT gerstnerelizabethr automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT yangli automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT huangraymondy automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement AT kalpathycramerjayashree automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement |