Cargando…

Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement

BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitat...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Ken, Beers, Andrew L, Bai, Harrison X, Brown, James M, Ly, K Ina, Li, Xuejun, Senders, Joeky T, Kavouridis, Vasileios K, Boaro, Alessandro, Su, Chang, Bi, Wenya Linda, Rapalino, Otto, Liao, Weihua, Shen, Qin, Zhou, Hao, Xiao, Bo, Wang, Yinyan, Zhang, Paul J, Pinho, Marco C, Wen, Patrick Y, Batchelor, Tracy T, Boxerman, Jerrold L, Arnaout, Omar, Rosen, Bruce R, Gerstner, Elizabeth R, Yang, Li, Huang, Raymond Y, Kalpathy-Cramer, Jayashree
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827825/
https://www.ncbi.nlm.nih.gov/pubmed/31190077
http://dx.doi.org/10.1093/neuonc/noz106
_version_ 1783465350804799488
author Chang, Ken
Beers, Andrew L
Bai, Harrison X
Brown, James M
Ly, K Ina
Li, Xuejun
Senders, Joeky T
Kavouridis, Vasileios K
Boaro, Alessandro
Su, Chang
Bi, Wenya Linda
Rapalino, Otto
Liao, Weihua
Shen, Qin
Zhou, Hao
Xiao, Bo
Wang, Yinyan
Zhang, Paul J
Pinho, Marco C
Wen, Patrick Y
Batchelor, Tracy T
Boxerman, Jerrold L
Arnaout, Omar
Rosen, Bruce R
Gerstner, Elizabeth R
Yang, Li
Huang, Raymond Y
Kalpathy-Cramer, Jayashree
author_facet Chang, Ken
Beers, Andrew L
Bai, Harrison X
Brown, James M
Ly, K Ina
Li, Xuejun
Senders, Joeky T
Kavouridis, Vasileios K
Boaro, Alessandro
Su, Chang
Bi, Wenya Linda
Rapalino, Otto
Liao, Weihua
Shen, Qin
Zhou, Hao
Xiao, Bo
Wang, Yinyan
Zhang, Paul J
Pinho, Marco C
Wen, Patrick Y
Batchelor, Tracy T
Boxerman, Jerrold L
Arnaout, Omar
Rosen, Bruce R
Gerstner, Elizabeth R
Yang, Li
Huang, Raymond Y
Kalpathy-Cramer, Jayashree
author_sort Chang, Ken
collection PubMed
description BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). METHODS: Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. RESULTS: The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. CONCLUSIONS: Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation.
format Online
Article
Text
id pubmed-6827825
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-68278252019-11-12 Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement Chang, Ken Beers, Andrew L Bai, Harrison X Brown, James M Ly, K Ina Li, Xuejun Senders, Joeky T Kavouridis, Vasileios K Boaro, Alessandro Su, Chang Bi, Wenya Linda Rapalino, Otto Liao, Weihua Shen, Qin Zhou, Hao Xiao, Bo Wang, Yinyan Zhang, Paul J Pinho, Marco C Wen, Patrick Y Batchelor, Tracy T Boxerman, Jerrold L Arnaout, Omar Rosen, Bruce R Gerstner, Elizabeth R Yang, Li Huang, Raymond Y Kalpathy-Cramer, Jayashree Neuro Oncol Basic and Translational Investigations BACKGROUND: Longitudinal measurement of glioma burden with MRI is the basis for treatment response assessment. In this study, we developed a deep learning algorithm that automatically segments abnormal fluid attenuated inversion recovery (FLAIR) hyperintensity and contrast-enhancing tumor, quantitating tumor volumes as well as the product of maximum bidimensional diameters according to the Response Assessment in Neuro-Oncology (RANO) criteria (AutoRANO). METHODS: Two cohorts of patients were used for this study. One consisted of 843 preoperative MRIs from 843 patients with low- or high-grade gliomas from 4 institutions and the second consisted of 713 longitudinal postoperative MRI visits from 54 patients with newly diagnosed glioblastomas (each with 2 pretreatment “baseline” MRIs) from 1 institution. RESULTS: The automatically generated FLAIR hyperintensity volume, contrast-enhancing tumor volume, and AutoRANO were highly repeatable for the double-baseline visits, with an intraclass correlation coefficient (ICC) of 0.986, 0.991, and 0.977, respectively, on the cohort of postoperative GBM patients. Furthermore, there was high agreement between manually and automatically measured tumor volumes, with ICC values of 0.915, 0.924, and 0.965 for preoperative FLAIR hyperintensity, postoperative FLAIR hyperintensity, and postoperative contrast-enhancing tumor volumes, respectively. Lastly, the ICCs for comparing manually and automatically derived longitudinal changes in tumor burden were 0.917, 0.966, and 0.850 for FLAIR hyperintensity volume, contrast-enhancing tumor volume, and RANO measures, respectively. CONCLUSIONS: Our automated algorithm demonstrates potential utility for evaluating tumor burden in complex posttreatment settings, although further validation in multicenter clinical trials will be needed prior to widespread implementation. Oxford University Press 2019-11 2019-06-13 /pmc/articles/PMC6827825/ /pubmed/31190077 http://dx.doi.org/10.1093/neuonc/noz106 Text en The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Basic and Translational Investigations
Chang, Ken
Beers, Andrew L
Bai, Harrison X
Brown, James M
Ly, K Ina
Li, Xuejun
Senders, Joeky T
Kavouridis, Vasileios K
Boaro, Alessandro
Su, Chang
Bi, Wenya Linda
Rapalino, Otto
Liao, Weihua
Shen, Qin
Zhou, Hao
Xiao, Bo
Wang, Yinyan
Zhang, Paul J
Pinho, Marco C
Wen, Patrick Y
Batchelor, Tracy T
Boxerman, Jerrold L
Arnaout, Omar
Rosen, Bruce R
Gerstner, Elizabeth R
Yang, Li
Huang, Raymond Y
Kalpathy-Cramer, Jayashree
Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title_full Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title_fullStr Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title_full_unstemmed Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title_short Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
title_sort automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement
topic Basic and Translational Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827825/
https://www.ncbi.nlm.nih.gov/pubmed/31190077
http://dx.doi.org/10.1093/neuonc/noz106
work_keys_str_mv AT changken automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT beersandrewl automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT baiharrisonx automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT brownjamesm automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT lykina automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT lixuejun automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT sendersjoekyt automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT kavouridisvasileiosk automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT boaroalessandro automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT suchang automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT biwenyalinda automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT rapalinootto automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT liaoweihua automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT shenqin automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT zhouhao automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT xiaobo automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT wangyinyan automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT zhangpaulj automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT pinhomarcoc automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT wenpatricky automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT batchelortracyt automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT boxermanjerroldl automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT arnaoutomar automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT rosenbrucer automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT gerstnerelizabethr automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT yangli automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT huangraymondy automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement
AT kalpathycramerjayashree automaticassessmentofgliomaburdenadeeplearningalgorithmforfullyautomatedvolumetricandbidimensionalmeasurement