Cargando…
Optimally adjusted last cluster for prediction based on balancing the bias and variance by bootstrapping
Estimating a predictive model from a dataset is best initiated with an unbiased estimator. However, since the unbiased estimator is unknown in general, the problem of the bias-variance tradeoff is raised. Aside from searching for an unbiased estimator, the convenient approach to the problem of the b...
Autor principal: | Kim, Jeongwoo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6827892/ https://www.ncbi.nlm.nih.gov/pubmed/31682618 http://dx.doi.org/10.1371/journal.pone.0223529 |
Ejemplares similares
-
Directional Variance Adjustment: Bias Reduction in Covariance Matrices Based on Factor Analysis with an Application to Portfolio Optimization
por: Bartz, Daniel, et al.
Publicado: (2013) -
Functional two-way analysis of variance and bootstrap methods for neural synchrony analysis
por: González Montoro, Aldana M, et al.
Publicado: (2014) -
Hypothesis Testing of Population Percentiles via the Wald Test with Bootstrap Variance Estimates
por: Johnson, William D., et al.
Publicado: (2016) -
ClusterBootstrap: An R package for the analysis of hierarchical data using generalized linear models with the cluster bootstrap
por: Deen, Mathijs, et al.
Publicado: (2019) -
Which method is optimal for estimating variance components and their variability in generalizability theory? evidence form a set of unified rules for bootstrap method
por: Li, Guangming
Publicado: (2023)