Cargando…
Direct comparison of supervised and semi-supervised retraining approaches for co-adaptive BCIs
For Brain-Computer interfaces (BCIs), system calibration is a lengthy but necessary process for successful operation. Co-adaptive BCIs aim to shorten training and imply positive motivation to users by presenting feedback already at early stages: After just 5 min of gathering calibration data, the sy...
Autores principales: | Schwarz, Andreas, Brandstetter, Julia, Pereira, Joana, Müller-Putz, Gernot R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828633/ https://www.ncbi.nlm.nih.gov/pubmed/31522355 http://dx.doi.org/10.1007/s11517-019-02047-1 |
Ejemplares similares
-
Semi-supervised adversarial discriminative domain adaptation
por: Nguyen, Thai-Vu, et al.
Publicado: (2022) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Supervised, semi-supervised and unsupervised inference of gene regulatory networks
por: Maetschke, Stefan R., et al.
Publicado: (2014) -
Self-supervised Learning for Semi-supervised Time Series Classification
por: Jawed, Shayan, et al.
Publicado: (2020)