Cargando…
Poisson–Delaunay Mosaics of Order k
The order-k Voronoi tessellation of a locally finite set [Formula: see text] decomposes [Formula: see text] into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of f...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828637/ https://www.ncbi.nlm.nih.gov/pubmed/31749513 http://dx.doi.org/10.1007/s00454-018-0049-2 |
_version_ | 1783465391992864768 |
---|---|
author | Edelsbrunner, Herbert Nikitenko, Anton |
author_facet | Edelsbrunner, Herbert Nikitenko, Anton |
author_sort | Edelsbrunner, Herbert |
collection | PubMed |
description | The order-k Voronoi tessellation of a locally finite set [Formula: see text] decomposes [Formula: see text] into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold. |
format | Online Article Text |
id | pubmed-6828637 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-68286372019-11-18 Poisson–Delaunay Mosaics of Order k Edelsbrunner, Herbert Nikitenko, Anton Discrete Comput Geom Article The order-k Voronoi tessellation of a locally finite set [Formula: see text] decomposes [Formula: see text] into convex domains whose points have the same k nearest neighbors in X. Assuming X is a stationary Poisson point process, we give explicit formulas for the expected number and total area of faces of a given dimension per unit volume of space. We also develop a relaxed version of discrete Morse theory and generalize by counting only faces, for which the k nearest points in X are within a given distance threshold. Springer US 2018-12-04 2019 /pmc/articles/PMC6828637/ /pubmed/31749513 http://dx.doi.org/10.1007/s00454-018-0049-2 Text en © The Author(s) 2018 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Article Edelsbrunner, Herbert Nikitenko, Anton Poisson–Delaunay Mosaics of Order k |
title | Poisson–Delaunay Mosaics of Order k |
title_full | Poisson–Delaunay Mosaics of Order k |
title_fullStr | Poisson–Delaunay Mosaics of Order k |
title_full_unstemmed | Poisson–Delaunay Mosaics of Order k |
title_short | Poisson–Delaunay Mosaics of Order k |
title_sort | poisson–delaunay mosaics of order k |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828637/ https://www.ncbi.nlm.nih.gov/pubmed/31749513 http://dx.doi.org/10.1007/s00454-018-0049-2 |
work_keys_str_mv | AT edelsbrunnerherbert poissondelaunaymosaicsoforderk AT nikitenkoanton poissondelaunaymosaicsoforderk |