Cargando…
Level of Agreement Between Problem Gamblers’ and Collaterals’ Reports: A Bayesian Random-Effects Two-Part Model
This study investigates the level of agreement between problem gamblers and their concerned significant others (CSOs) regarding the amount of money lost when gambling. Reported losses were analyzed from 266 participants (133 dyads) seeking treatment, which included different types of CSO–gambler dya...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828640/ https://www.ncbi.nlm.nih.gov/pubmed/30941609 http://dx.doi.org/10.1007/s10899-019-09847-y |
Sumario: | This study investigates the level of agreement between problem gamblers and their concerned significant others (CSOs) regarding the amount of money lost when gambling. Reported losses were analyzed from 266 participants (133 dyads) seeking treatment, which included different types of CSO–gambler dyads. The intraclass correlation coefficients (ICCs) concerning the money lost when gambling during the last 30 days were calculated based on the timeline followback. In order to model reports that were highly skewed and included zeros, a two-part generalized linear mixed-effects model was used. The results were compared from models assuming either a Gaussian, two-part gamma, or two-part lognormal response distribution. Overall, the results indicated a fair level of agreement, ICC = .57, 95% CI (.48, .64), between the gamblers and their CSOs. The partner CSOs tended to exhibit better agreement than the parent CSOs with regard to the amount of money lost, ICC(diff) = .20, 95% CI (.03, .39). The difference became smaller and inconclusive when reports of no losses (zeros) were included, ICC(diff) = .16, 95% CI (− .05, .36). A small simulation investigation indicated that the two-part model worked well under assumptions related to this study, and further, that calculating the ICCs under normal assumptions led to incorrect conclusions regarding the level of agreement for skewed reports (such as gambling losses). For gambling losses, the normal assumption is unlikely to hold and ICCs based on this assumption are likely to be highly unreliable. |
---|