Cargando…
Unveiling the electronic transformations in the semi-metallic correlated-electron transitional oxide Mo(8)O(23)
Mo(8)O(23) is a low-dimensional chemically robust transition metal oxide coming from a prospective family of functional materials, MoO(3−x), ranging from a wide gap insulator (x = 0) to a metal (x = 1). The large number of stoichometric compounds with intermediate x have widely different properties....
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828745/ https://www.ncbi.nlm.nih.gov/pubmed/31685868 http://dx.doi.org/10.1038/s41598-019-52231-4 |
Sumario: | Mo(8)O(23) is a low-dimensional chemically robust transition metal oxide coming from a prospective family of functional materials, MoO(3−x), ranging from a wide gap insulator (x = 0) to a metal (x = 1). The large number of stoichometric compounds with intermediate x have widely different properties. In Mo(8)O(23), an unusual charge density wave transition has been suggested to occur above room temperature, but its low temperature behaviour is particularly enigmatic. We present a comprehensive experimental study of the electronic structure associated with various ordering phenomena in this compound, complemented by theory. Density-functional theory (DFT) calculations reveal a cross-over from a semi-metal with vanishing band overlap to narrow-gap semiconductor behaviour with decreasing temperature. A buried Dirac crossing at the zone boundary is confirmed by angle-resolved photoemission spectroscopy (ARPES). Tunnelling spectroscopy (STS) reveals a gradual gap opening corresponding to a metal-to-insulator transition at 343 K in resistivity, consistent with CDW formation and DFT results, but with large non-thermal smearing of the spectra implying strong carrier scattering. At low temperatures, the CDW picture is negated by the observation of a metallic Hall contribution, a non-trivial gap structure in STS below ∼170 K and ARPES spectra, that together represent evidence for the onset of the correlated state at 70 K and the rapid increase of gap size below ∼30 K. The intricate interplay between electronic correlations and the presence of multiple narrow bands near the Fermi level set the stage for metastability and suggest suitability for memristor applications. |
---|