Cargando…

Hyper-parallel nonlocal CNOT operation with hyperentanglement assisted by cross-Kerr nonlinearity

Implementing CNOT operation nonlocally is one of central tasks in distributed quantum computation. Most of previously protocols for implementation quantum CNOT operation only consider implement CNOT operation in one degree of freedom(DOF). In this paper, we present a scheme for nonlocal implementati...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Ping, Lv, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828799/
https://www.ncbi.nlm.nih.gov/pubmed/31685851
http://dx.doi.org/10.1038/s41598-019-52173-x
Descripción
Sumario:Implementing CNOT operation nonlocally is one of central tasks in distributed quantum computation. Most of previously protocols for implementation quantum CNOT operation only consider implement CNOT operation in one degree of freedom(DOF). In this paper, we present a scheme for nonlocal implementation of hyper-parallel CNOT operation in polarization and spatial-mode DOFs via hyperentanglement. The CNOT operations in polarization DOF and spatial-mode DOF can be remote implemented simultaneously with hyperentanglement assisited by cross-Kerr nonlinearity. Hyper-parallel nonlocal CNOT gate can enhance the quantum channel capacity for distributed quantum computation and long-distance quantum communication. We discuss the experiment feasibility for hyper-parallel nonlocal gate. It shows that the protocol for hyper-parallel nonlocal CNOT operation can be realized with current technology.