Cargando…
A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis
During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today’s cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828968/ https://www.ncbi.nlm.nih.gov/pubmed/31736987 http://dx.doi.org/10.3389/fpls.2019.01264 |
_version_ | 1783465459665862656 |
---|---|
author | Voith von Voithenberg, Lena Park, Jiyoung Stübe, Roland Lux, Christopher Lee, Youngsook Philippar, Katrin |
author_facet | Voith von Voithenberg, Lena Park, Jiyoung Stübe, Roland Lux, Christopher Lee, Youngsook Philippar, Katrin |
author_sort | Voith von Voithenberg, Lena |
collection | PubMed |
description | During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today’s cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake. |
format | Online Article Text |
id | pubmed-6828968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-68289682019-11-15 A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis Voith von Voithenberg, Lena Park, Jiyoung Stübe, Roland Lux, Christopher Lee, Youngsook Philippar, Katrin Front Plant Sci Plant Science During evolution, chloroplasts, which originated by endosymbiosis of a prokaryotic ancestor of today’s cyanobacteria with a eukaryotic host cell, were established as the site for photosynthesis. Therefore, chloroplast organelles are loaded with transition metals including iron, copper, and manganese, which are essential for photosynthetic electron transport due to their redox capacity. Although transport, storage, and cofactor-assembly of metal ions in chloroplasts are tightly controlled and crucial throughout plant growth and development, knowledge on the molecular nature of chloroplast metal-transport proteins is still fragmentary. Here, we characterized the soluble, ATP-binding ABC-transporter subunits ABCI10 and ABCI11 in Arabidopsis thaliana, which show similarities to components of prokaryotic, multisubunit ABC transporters. Both ABCI10 and ABCI11 proteins appear to be strongly attached to chloroplast-intrinsic membranes, most likely inner envelopes for ABCI10 and possibly plastoglobuli for ABCI11. Loss of ABCI10 and ABCI11 gene products in Arabidopsis leads to extremely dwarfed, albino plants showing impaired chloroplast biogenesis and deregulated metal homeostasis. Further, we identified the membrane-intrinsic protein ABCI12 as potential interaction partner for ABCI10 in the inner envelope. Our results suggest that ABCI12 inserts into the chloroplast inner envelope membrane most likely with five predicted α-helical transmembrane domains and represents the membrane-intrinsic subunit of a prokaryotic-type, energy-coupling factor (ECF) ABC-transporter complex. In bacteria, these multisubunit ECF importers are widely distributed for the uptake of nickel and cobalt metal ions as well as for import of vitamins and several other metabolites. Therefore, we propose that ABCI10 (as the ATPase A-subunit) and ABCI12 (as the membrane-intrinsic, energy-coupling T-subunit) are part of a novel, chloroplast envelope-localized, AAT energy-coupling module of a prokaryotic-type ECF transporter, most likely involved in metal ion uptake. Frontiers Media S.A. 2019-10-29 /pmc/articles/PMC6828968/ /pubmed/31736987 http://dx.doi.org/10.3389/fpls.2019.01264 Text en Copyright © 2019 Voith von Voithenberg, Park, Stübe, Lux, Lee and Philippar http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Voith von Voithenberg, Lena Park, Jiyoung Stübe, Roland Lux, Christopher Lee, Youngsook Philippar, Katrin A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title | A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title_full | A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title_fullStr | A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title_full_unstemmed | A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title_short | A Novel Prokaryote-Type ECF/ABC Transporter Module in Chloroplast Metal Homeostasis |
title_sort | novel prokaryote-type ecf/abc transporter module in chloroplast metal homeostasis |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828968/ https://www.ncbi.nlm.nih.gov/pubmed/31736987 http://dx.doi.org/10.3389/fpls.2019.01264 |
work_keys_str_mv | AT voithvonvoithenberglena anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT parkjiyoung anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT stuberoland anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT luxchristopher anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT leeyoungsook anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT philipparkatrin anovelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT voithvonvoithenberglena novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT parkjiyoung novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT stuberoland novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT luxchristopher novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT leeyoungsook novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis AT philipparkatrin novelprokaryotetypeecfabctransportermoduleinchloroplastmetalhomeostasis |