Cargando…
A Deep Learning Approach for Detecting Copy Number Variation in Next-Generation Sequencing Data
Copy number variants (CNV) are associated with phenotypic variation in several species. However, properly detecting changes in copy numbers of sequences remains a difficult problem, especially in lower quality or lower coverage next-generation sequencing data. Here, inspired by recent applications o...
Autores principales: | Hill, Tom, Unckless, Robert L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Genetics Society of America
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829143/ https://www.ncbi.nlm.nih.gov/pubmed/31455677 http://dx.doi.org/10.1534/g3.119.400596 |
Ejemplares similares
-
Detecting copy number variation in next generation sequencing data from diagnostic gene panels
por: Singh, Ashish Kumar, et al.
Publicado: (2021) -
Next-generation sequencing-based bulked segregant analysis without sequencing the parental genomes
por: Zhang, Jianbo, et al.
Publicado: (2021) -
Algorithmic improvements for discovery of germline copy number variants in next-generation sequencing data
por: O’Fallon, Brendan, et al.
Publicado: (2022) -
NGSremix: a software tool for estimating pairwise relatedness between admixed individuals from next-generation sequencing data
por: Nøhr, Anne Krogh, et al.
Publicado: (2021) -
Hecaton: reliably detecting copy number variation in plant genomes using short read sequencing data
por: Wijfjes, Raúl Y., et al.
Publicado: (2019)