Cargando…
The synaptic pathology of cognitive life
Prospective, community-based studies allow evaluation of associations between cognitive functioning and synaptic measures, controlled for age-related pathologies. Findings from >400 community-based participants are reviewed. Levels of two presynaptic proteins, complexin-I (inhibitory terminals),...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Les Laboratoires Servier
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829169/ https://www.ncbi.nlm.nih.gov/pubmed/31749651 http://dx.doi.org/10.31887/DCNS.2019.21.3/whoner |
Sumario: | Prospective, community-based studies allow evaluation of associations between cognitive functioning and synaptic measures, controlled for age-related pathologies. Findings from >400 community-based participants are reviewed. Levels of two presynaptic proteins, complexin-I (inhibitory terminals), and complexin-II (excitatory terminals) contributed to cognitive variation from normal to dementia. Adding the amount of protein-protein interaction between two others, synaptosome-associated protein-25 and syntaxin, explained 6% of overall variance. The presynaptic protein Munc18-1 long variant was localized to inhibitory terminals, and like complexin-I, was positively associated with cognition. Associations depended on Braak stage, with the level of complexin-I contributing nearly 15% to cognitive variation in stages 0-II, while complexin-II contributed 7% in stages V-VI. Non-denaturing gels identified multiple soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein-protein (SNARE) complexes in frontal and in temporal lobes, making specific contributions to cognitive functions. Multiple mechanisms of presynaptic plasticity contribute to cognitive function during aging.
|
---|