Cargando…
Genome-Wide Identification of Direct Targets of the TTG1–bHLH–MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana
Extensive studies have shown that the MBW complex consisting of three kinds of regulatory proteins, MYB and basic helix–loop–helix (bHLH) transcription factors and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), acts in concert to promote trichome formation and flavonoid accumulation in Ara...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829465/ https://www.ncbi.nlm.nih.gov/pubmed/31658678 http://dx.doi.org/10.3390/ijms20205014 |
Sumario: | Extensive studies have shown that the MBW complex consisting of three kinds of regulatory proteins, MYB and basic helix–loop–helix (bHLH) transcription factors and a WD40 repeat protein, TRANSPARENT TESTA GLABRA1 (TTG1), acts in concert to promote trichome formation and flavonoid accumulation in Arabidopsis thaliana. TTG1 functions as an essential activator in these two biological processes. However, direct downstream targets of the TTG1-dependent MBW complex have not yet been obtained in the two biological processes at the genome-wide level in A. thaliana. In the present study, we found, through RNA sequencing and quantitative real-time PCR analysis, that a great number of regulatory and structural genes involved in both trichome formation and flavonoid accumulation are significantly downregulated in the young shoots and expanding true leaves of ttg1-13 plants. Post-translational activation of a TTG1-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that these downregulated genes are directly or indirectly targeted by the TTG1-dependent MBW complex in vivo during trichome formation and flavonoid accumulation. These findings further extend our understanding of the role of TTG1-dependent MBW complex in the regulation of trichome formation and flavonoid accumulation in A. thaliana. |
---|