Cargando…

Tubulin-Dependent Transport of Connexin-36 Potentiates the Size and Strength of Electrical Synapses

Connexin-36 (Cx36) electrical synapses strengthen transmission in a calcium/calmodulin (CaM)/calmodulin-dependent kinase II (CaMKII)-dependent manner similar to a mechanism whereby the N-methyl-D-aspartate (NMDA) receptor subunit NR2B facilitates chemical transmission. Since NR2B–microtubule interac...

Descripción completa

Detalles Bibliográficos
Autores principales: Brown, Cherie A., del Corsso, Cristiane, Zoidl, Christiane, Donaldson, Logan W., Spray, David C., Zoidl, Georg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829524/
https://www.ncbi.nlm.nih.gov/pubmed/31557934
http://dx.doi.org/10.3390/cells8101146
Descripción
Sumario:Connexin-36 (Cx36) electrical synapses strengthen transmission in a calcium/calmodulin (CaM)/calmodulin-dependent kinase II (CaMKII)-dependent manner similar to a mechanism whereby the N-methyl-D-aspartate (NMDA) receptor subunit NR2B facilitates chemical transmission. Since NR2B–microtubule interactions recruit receptors to the cell membrane during plasticity, we hypothesized an analogous modality for Cx36. We determined that Cx36 binding to tubulin at the carboxy-terminal domain was distinct from Cx43 and NR2B by binding a motif overlapping with the CaM and CaMKII binding motifs. Dual patch-clamp recordings demonstrated that pharmacological interference of the cytoskeleton and deleting the binding motif at the Cx36 carboxyl-terminal (CT) reversibly abolished Cx36 plasticity. Mechanistic details of trafficking to the gap-junction plaque (GJP) were probed pharmacologically and through mutational analysis, all of which affected GJP size and formation between cell pairs. Lys279, Ile280, and Lys281 positions were particularly critical. This study demonstrates that tubulin-dependent transport of Cx36 potentiates synaptic strength by delivering channels to GJPs, reinforcing the role of protein transport at chemical and electrical synapses to fine-tune communication between neurons.