Cargando…
A Data-Driven Approach to Predicting Septic Shock in the Intensive Care Unit
Early diagnosis of sepsis and septic shock has been unambiguously linked to lower mortality and better patient outcomes. Despite this, there is a strong unmet need for a reliable clinical tool that can be used for large-scale automated screening to identify high-risk patients. We addressed the follo...
Autores principales: | Yee, Christopher R, Narain, Niven R, Akmaev, Viatcheslav R, Vemulapalli, Vijetha |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829643/ https://www.ncbi.nlm.nih.gov/pubmed/31700248 http://dx.doi.org/10.1177/1178222619885147 |
Ejemplares similares
-
bAIcis: A Novel Bayesian Network Structural Learning Algorithm and Its Comprehensive Performance Evaluation Against Open-Source Software
por: Zhang, Lixia, et al.
Publicado: (2020) -
Prediction of septic and hypovolemic shock in intensive care unit
patients using machine learning
por: Pessoa, Stela Mares Brasileiro, et al.
Publicado: (2022) -
Shock Severity Assessment in Cardiac Intensive Care Unit Patients With Sepsis and Mixed Septic-Cardiogenic Shock
por: Jentzer, Jacob C., et al.
Publicado: (2021) -
Data-driven discovery of a novel sepsis pre-shock state predicts impending septic shock in the ICU
por: Liu, Ran, et al.
Publicado: (2019) -
Integration of metabolic and inflammatory mediator profiles as a potential prognostic approach for septic shock in the intensive care unit
por: Mickiewicz, Beata, et al.
Publicado: (2015)