Cargando…

Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning

INTRODUCTION: Stereotactic body radiation therapy (SBRT) was found effective in treating laryngeal cancer with only five treatment fractions by a recent clinical trial (NCT01984502, ClinicalTrials.gov). Nevertheless, this trial used the Cyberknife system, which is not widely accessible enough to ben...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, You, Chiu, Tsuicheng, Dubas, Jeffrey, Tian, Zhen, Lee, Pam, Gu, Xuejun, Yan, Yulong, Sher, David, Timmerman, Robert, Zhao, Bo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2019
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829943/
https://www.ncbi.nlm.nih.gov/pubmed/31684993
http://dx.doi.org/10.1186/s13014-019-1404-z
_version_ 1783465676273352704
author Zhang, You
Chiu, Tsuicheng
Dubas, Jeffrey
Tian, Zhen
Lee, Pam
Gu, Xuejun
Yan, Yulong
Sher, David
Timmerman, Robert
Zhao, Bo
author_facet Zhang, You
Chiu, Tsuicheng
Dubas, Jeffrey
Tian, Zhen
Lee, Pam
Gu, Xuejun
Yan, Yulong
Sher, David
Timmerman, Robert
Zhao, Bo
author_sort Zhang, You
collection PubMed
description INTRODUCTION: Stereotactic body radiation therapy (SBRT) was found effective in treating laryngeal cancer with only five treatment fractions by a recent clinical trial (NCT01984502, ClinicalTrials.gov). Nevertheless, this trial used the Cyberknife system, which is not widely accessible enough to benefit all patients affected by laryngeal cancer. Our study investigates the feasibility of larynx SBRT treatment planning on a conventional gantry-based LINAC and compares its plan quality with that from the Cyberknife. MATERIALS & METHODS: Ten larynx SBRT cases were originally treated by Cyberknife using fixed cones in our institution, with plans created and optimized using the Monte-Carlo algorithm in the MultiPlan treatment planning system. These cases were retrospectively planned in the Eclipse planning system for a LINAC with the same prescription dose. We used volumetric modulated arc therapy (VMAT) for larynx SBRT planning in Eclipse and incorporated non-coplanar arcs to approach the Cyberknife’s large solid angle delivery space. We used both anisotropic analytical algorithm (AAA) and Acuros XB (AXB) algorithm for dose calculation and compared their accuracy by measurements on an in-house larynx phantom. We compared the LINAC VMAT plans (VMAT-AAA and VMAT-AXB) with the original Cyberknife plans using dosimetric endpoints such as the conformity index, gradient indices (R50, R20), OAR maximum/mean doses, and the monitor units. RESULTS: Phantom measurement showed that both the AAA and the AXB algorithms provided adequate dose calculation accuracy (94.7% gamma pass rate on 2%/2 mm criteria for AAA vs. 97.3% for AXB), though AXB provided better accuracy in the air cavity. The LINAC-based VMAT plans achieved similar dosimetric endpoints as the Cyberknife planning, and all plans met the larynx SBRT dosimetric constraints. Cyberknife plans achieved an average conformity index of 1.13, compared to 1.20 of VMAT-AXB and 1.19 of VMAT-AAA. The VMAT plans spared the thyroid gland better with average Dmean of 2.4 Gy (VMAT-AXB) and 2.7 Gy (VMAT-AAA), as compared to 4.3 Gy for Cyberknife plans. The VMAT-AAA plans had a slightly lower contralateral arytenoid Dmax (average: 15.2 Gy) than Cyberknife plans (average: 17.9 Gy) with statistical significance, while the contralateral arytenoid Dmax was similar between VMAT-AXB and Cyberknife plans with no statistically significant difference. Cyberknife plans offered slightly better R50 (average: 5.0) than VMAT-AXB (5.9) and VMAT-AAA (5.7) plans. The VMAT plans substantially reduced the plan MUs to less than 1/3 of the Cyberknife plans, and the differences were statistically significant. The other metrics were similar between VMAT and Cyberknife plans with no statistically significant differences. CONCLUSIONS: Gantry-based LINACs can achieve similar plan quality to Cyberknife systems. Treatment outcome with both methods remains to be investigated.
format Online
Article
Text
id pubmed-6829943
institution National Center for Biotechnology Information
language English
publishDate 2019
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-68299432019-11-07 Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning Zhang, You Chiu, Tsuicheng Dubas, Jeffrey Tian, Zhen Lee, Pam Gu, Xuejun Yan, Yulong Sher, David Timmerman, Robert Zhao, Bo Radiat Oncol Research INTRODUCTION: Stereotactic body radiation therapy (SBRT) was found effective in treating laryngeal cancer with only five treatment fractions by a recent clinical trial (NCT01984502, ClinicalTrials.gov). Nevertheless, this trial used the Cyberknife system, which is not widely accessible enough to benefit all patients affected by laryngeal cancer. Our study investigates the feasibility of larynx SBRT treatment planning on a conventional gantry-based LINAC and compares its plan quality with that from the Cyberknife. MATERIALS & METHODS: Ten larynx SBRT cases were originally treated by Cyberknife using fixed cones in our institution, with plans created and optimized using the Monte-Carlo algorithm in the MultiPlan treatment planning system. These cases were retrospectively planned in the Eclipse planning system for a LINAC with the same prescription dose. We used volumetric modulated arc therapy (VMAT) for larynx SBRT planning in Eclipse and incorporated non-coplanar arcs to approach the Cyberknife’s large solid angle delivery space. We used both anisotropic analytical algorithm (AAA) and Acuros XB (AXB) algorithm for dose calculation and compared their accuracy by measurements on an in-house larynx phantom. We compared the LINAC VMAT plans (VMAT-AAA and VMAT-AXB) with the original Cyberknife plans using dosimetric endpoints such as the conformity index, gradient indices (R50, R20), OAR maximum/mean doses, and the monitor units. RESULTS: Phantom measurement showed that both the AAA and the AXB algorithms provided adequate dose calculation accuracy (94.7% gamma pass rate on 2%/2 mm criteria for AAA vs. 97.3% for AXB), though AXB provided better accuracy in the air cavity. The LINAC-based VMAT plans achieved similar dosimetric endpoints as the Cyberknife planning, and all plans met the larynx SBRT dosimetric constraints. Cyberknife plans achieved an average conformity index of 1.13, compared to 1.20 of VMAT-AXB and 1.19 of VMAT-AAA. The VMAT plans spared the thyroid gland better with average Dmean of 2.4 Gy (VMAT-AXB) and 2.7 Gy (VMAT-AAA), as compared to 4.3 Gy for Cyberknife plans. The VMAT-AAA plans had a slightly lower contralateral arytenoid Dmax (average: 15.2 Gy) than Cyberknife plans (average: 17.9 Gy) with statistical significance, while the contralateral arytenoid Dmax was similar between VMAT-AXB and Cyberknife plans with no statistically significant difference. Cyberknife plans offered slightly better R50 (average: 5.0) than VMAT-AXB (5.9) and VMAT-AAA (5.7) plans. The VMAT plans substantially reduced the plan MUs to less than 1/3 of the Cyberknife plans, and the differences were statistically significant. The other metrics were similar between VMAT and Cyberknife plans with no statistically significant differences. CONCLUSIONS: Gantry-based LINACs can achieve similar plan quality to Cyberknife systems. Treatment outcome with both methods remains to be investigated. BioMed Central 2019-11-04 /pmc/articles/PMC6829943/ /pubmed/31684993 http://dx.doi.org/10.1186/s13014-019-1404-z Text en © The Author(s). 2019 Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Zhang, You
Chiu, Tsuicheng
Dubas, Jeffrey
Tian, Zhen
Lee, Pam
Gu, Xuejun
Yan, Yulong
Sher, David
Timmerman, Robert
Zhao, Bo
Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title_full Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title_fullStr Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title_full_unstemmed Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title_short Benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: LINAC-based non-coplanar VMAT vs. Cyberknife planning
title_sort benchmarking techniques for stereotactic body radiotherapy for early-stage glottic laryngeal cancer: linac-based non-coplanar vmat vs. cyberknife planning
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829943/
https://www.ncbi.nlm.nih.gov/pubmed/31684993
http://dx.doi.org/10.1186/s13014-019-1404-z
work_keys_str_mv AT zhangyou benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT chiutsuicheng benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT dubasjeffrey benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT tianzhen benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT leepam benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT guxuejun benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT yanyulong benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT sherdavid benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT timmermanrobert benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning
AT zhaobo benchmarkingtechniquesforstereotacticbodyradiotherapyforearlystageglotticlaryngealcancerlinacbasednoncoplanarvmatvscyberknifeplanning